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In an effort to create high reliability autonomous
ground vehicles capable of operations 24 hours a day,
redundancy plays a key role. In particular, localisation
systems need to have multiple separate systems to al-
low for position validation and backup in case of failure
of the primary localiser. These systems need to provide
high performance in day and night conditions. In this
paper, we investigate the onboard and offboard lighting
required to allow a vision-based localisation system to
provide high performance during night operations in an
industrial environment. The comprehensive discussion
on sensors and setup and the quantitative evaluation pre-
sented provide a relevant discussion towards using vision
systems 24 hours a day.

1 Introduction

For autonomous industrial vehicles, the localisation sys-
tem needs to be robust to the operational and environ-
mental conditions, and provide the required accuracy for
the intended operations, 24 hours a day, in various envi-
ronment and weather conditions. It also needs to have
relatively inexpensive hardware components to be fea-
sible to industry, and ideally require as few additional
computational resources as possible for satisfactory op-
eration.
Our goal is to develop a robust localisation system for

autonomous industrial vehicles that has levels of redun-
dancy to allow the vehicle to continue operations despite
failures and be able to detect and manage degradations
in performance. The system needs to be reliable and
ideally require as little as possible additional resources
to allow them to operate. Currently, we have a reliable
primary localiser based on retro-reflective beacons and
lidars. This system has been in use for several years
on our autonomous Hot Metal Carrier (Figure 1) and
demonstrated high accuracy and robustness under vary-
ing environment and weather conditions.
In this paper, we focus on evaluating a secondary,

vision-based localisation system, that has demonstrated
high accuracy under daylight conditions [Nuske et al.,

Figure 1: The autonomous Hot Metal Carrier undertak-
ing payload handling operations in a duststorm.

2008; 2009]. A vision-based approach offers a different
modality to the lidar system which improves reliability
under primary system failure. One of the issues with us-
ing images from the visible spectrum is its performance
variation with changes in lighting conditions. Low-light
and high-dynamic range cameras alleviate these issues
to an extent but they still suffer in dark environments.
In this paper, we test the effects of different common
lighting methods on performance of a vision-based local-
isation system, when compared with a known accurate
lidar-based system used as a ground truth. The main
contribution is the evaluation of the lighting and sensor
required in night-time operations to allow a vision-based
localiser to perform to a high enough standard to be con-
sidered as a viable secondary localiser for autonomous
industrial vehicles.
The remainder of this paper is arranged with the re-

lated work next in Section 2. Section 3 outlines the
methodology including the cameras and lighting used.
Section 4 shows the results of comparison between the
ground truth and vision-based localisation system un-
der different lighting conditions. A discussion is also



included to summarise the performance of the different
combinations. Conclusions are presented in Section 5.

2 Localisation Using Edge Features

Most of the related literature using vision solutions as-
sume that good quality images are available. Under
these circumstances, a common approach for vision-
based localisation is to build visual maps consisting of
image point features, such as SIFT [Lowe, 2004] or
SURF [Bay et al., 2006] applied to outdoor scenar-
ios [Weiss et al., 2007; Tabuse et al., 2011]. Although
very good results can be achieved in specific environ-
ments, a significant concern is the fact that the fea-
tures are not invariant to non-planar scenes [Vedaldi and
Soatto, 2008]. The main challenge with point features,
however, is that they change significantly depending on
lighting conditions [Lowe, 2004], which can make them
inadequate for repeatable longer term operations [Nuske
et al., 2009]. When precise localisation is not necessary,
Valgren et al. [Valgren and Lilienthal, 2010], for example,
have indicated that SURF can be applied for topological
localisation across different seasons. A sequential learn-
ing matching method for place recognition [Milford and
Wyeth, 2012] has also shown very good results, although
continuous precise localisation is still a challenge. Other
attempts to address illumination changes include com-
bining different SLAM algorithms [Glover et al., 2010],
the generation of dynamic maps [Biber et al., 2005],
and emphasis on high dynamic range [Irie et al., 2011].
Still, these methods deal with relatively minor percep-
tual change caused by sun movement during the day, or
constrained changes in an indoor office environment.
Mitigating these lighting issues, the use of edge fea-

tures has been proposed [Nuske et al., 2008; Rofer and
Jungel, 2003; Zhou et al., 2003], illustrating that edges
from infrastructure (buildings, posts, trees, etc) are a
very strong environmental feature that are fairly robust
to illumination changes. Among methods that exploit
edge features, additional robustness can be achieved by
comparing an edge-filtered version of the input from
the camera with a predefined 3D edge map of the en-
vironment. Following this approach, Drummond and
Cipolla [Drummond and Cipolla, 2002] and Reitmayr
and Drummond [Reitmayr and Drummond, 2006] devel-
oped a real-time edge localisation technique that can be
applied indoors and outdoors. One limitation of those
works is that the 3D edge-based techniques calculate
only a single pose estimate per iteration, reducing the
robustness of the system as it becomes susceptible to iso-
lated errors. Multi-modal alternatives such as the parti-
cle filter method proposed by Klein and Murray [Klein
and Murray, 2006] provide better performance by main-
taining several pose estimates at each frame. In an ex-
tension of Klein and Murray’s algorithm, a novel obser-

vation function for the particle filter was developed by
Nuske et al. [Nuske et al., 2009] (we refer to this method
as particle filter edge-based localisation (PFEL) in this
paper), further improving the localisation accuracy. In
addition, their algorithm also uses an intelligent expo-
sure control that improves the quality of the relevant
edge information in the image. The authors show re-
sults outdoors over sunny and rainy weather, illustrating
significant robustness in challenging and changing illumi-
nation conditions. Exploiting the fact that in structured
environments edges are often straight lines, edge features
can be further amplified by applying the Hough trans-
form to the high-pass image, filtering in lines that are
more likely to be part of the predefined 3D edge map of
the environment [Borges et al., 2010].
As mentioned earlier, the goal of this paper is to

evaluate the lighting required in night-time operations
to allow a vision-based localiser to perform to high
enough standard to be a viable secondary localiser for
autonomous industrial vehicles. Considering the tech-
niques above, the one proposed by Nuske et al. [Nuske
et al., 2009], presents high robustness in our industrial
site, where the architectural configuration of the build-
ings is fixed, and provides a good set of edge line features
from which to localise. For this reason, we choose PFEL
as the basis for our low-light operation evaluation. More
details about this localisation algorithm are given in Sec-
tion 3.2.

3 Method

A primary motivation for our research is to have it de-
ployed in industrial environments and gaining industry
acceptance. One of the implications of this is that we
need to keep the costs of system implementation as low
as possible, but highly effective. Based on this motiva-
tion and the performance of the vision-based localiser
[Nuske et al., 2008], our approach is to determine the
level of normal industrial lighting around infrastructure
and on the vehicle that provides high performance.
Figures 2 and 3 show the test environment during day

and night from a building webcam. The environment
has been used for autonomous vehicle development for
several years and the laser-beacon localisation system
[Pradalier et al., 2008] has demonstrated consistently ac-
curate and reliable performance in this area.
Each of the major aspects to be considered are de-

scribed in the remainder of this section.

3.1 Lighting

As discussed in Section 2, systems that rely on features
can have differently matched features across a very short
period of time. However, some features, such as build-
ing and shed door outlines may still be strong enough



Figure 2: The test environment at daytime. The reflec-
tive beacons used in the laser beacon localisation system
can be seen as white tape attached to bollards. The
environment measures approximately 50m by 35m.

Figure 3: The test environment at night, illuminated by
exterior shed lights, and through the two open doors of
the robot shed. While it may appear there is a substan-
tial amount of lighting, the building camera has good
low visibility performance, and the illumination through
the shed doors was not used in the tests.

to allow for good localisation. This is illustrated in Fig-
ures 4 and 5, which show the same images as above with
Sobel edge-detection applied. Apart from the major dif-
ferences in scenes including the barrels and trees, the
main building and doorway edges can be seen in both
figures. In the test area, site lighting consists of lights
above personal door entries to sheds, and flood lights
mounted to the outside of sheds. These provide suffi-
cient illumination for people to move around the area
during the night.
The other main source of illumination is from the

lights onboard a vehicle. These can include driving lights
illuminating the road in front and behind the vehicle, and
side floodlights to allow better situational awareness for
the vehicle operator. For our purposes, we used the for-
ward and rear vehicle lights, and floodlights on the side
of the vehicle to illuminate the scene where the cameras
were facing as shown in Figure 6.

Figure 4: The daytime image with a Sobel filter applied.

Figure 5: The night image with a Sobel filter applied.

3.2 Edge-based Localisation

Based on the lighting aspects discussed above and the
literature review in Section 2, PFEL is the vision-based
localisation method employed in this work. It uses cam-
eras mounted on a vehicle tracking linear features such
as building edges, doors, and roof lines in a large out-
door industrial building environment. For this task, a
sparse 3D edge map of the site is utilised, consisting of
around 20 large industrial buildings. This map can be
generated via professional surveying, or acquired auto-
matically with laser range sensors [Borges et al., 2010].
Examples of the surveyed map for the test environment
are given in Figure 7. Once the map is created, a ve-
hicle moving through the environment can be localised
by matching edges in the map with edges extracted from
the onboard camera images (Figures 8(a) and 8(b)). The
comparison between the image and the map is calculated
for each pose hypothesis in a particle filter and provides a
likelihood measure for that particle. In our case, where
the images were dark, we performed histogram equali-
sation to improve the edge detection. Although some
of the images looked quite dark to the human eye (e.g.
Figure 10), because of the high signal-to-noise ratio in
the sensor (discussed in Section 3.3 below), a histogram
equalisation was able to improve significantly the edge
detection without causing excessive noise artifacts.



Figure 6: The lights onboard the vehicle. There are two
forward driving lights, two side lights (yellow arrow), and
two rear lights (cyan arrows) since the vehicle reverses
in to pick up the payload. In this figure, one of the side
lights is facing rearwards towards the vehicle’s pickup
hook. The other is not visible. The red arrows indicate
the approximate positions of the two cameras, mounted
above the left and right mudguards.

Figure 7: 3-D edge map of the test area generated from
surveyed data.

Full details on the particle filter implementation can
be found in the original publication [Nuske et al.,
2009]. This reference also provides additional informa-
tion about the system, such as robustness to occlusions
and intelligent exposure control to deal with challenging
outdoor lighting conditions.

3.3 Cameras

The camera used plays an essential role in the quality of
the localisation results. Using standard consumer cam-
eras, we have performed tests with a number of CMOS
and CCD sensors. Examples include the Basler sca750-
60gc, the Axis 233d, the Unibrain Fire-i 1.2, the Point-
grey Dragonfly 640×480C, and the Basler A312fc
The experiments indicated that in low light, the cam-

era’s sensors discussed above are not sensitive enough
(even with some amount of auxiliary external lighting, as
discussed in Section 4) and are not suitable for the local-
isation algorithm, considering the necessary frame rate
and resolutions. Among the tested cameras, however,

(a) Image after undistor-
tion, overlaid with edge
model (in green).

(b) Edge image after undis-
tortion, overlaid with edge
model (in green).

Figure 8: Original and edge images with models overlaid.

one class of sensors - the Sony ICX285 series - showed
very good low light performance, providing satisfactory
input images at 15 frames per second. This sensor has
a quantum efficiency around 64% with a low dark cur-
rent (8 electrons/pixel/second). The quantum efficiency
is defined as the percentage of the generated electronic
charges by the incoming photons, whereas the dark cur-
rent is the current produced when no photons are reach-
ing the sensor. As the ICX285 is a relatively popular
sensor, this was our primary choice. Therefore, most
of the results reported in Section 4 were obtained using
the Basler sca1400-gm camera, which uses the ICX285
of resolution 1280 × 960. A small number of prelimi-
nary tests with more recent sensors (the Sony ICX674)
with a quantum efficiency of 68% have also presented
satisfactory images. This indicates that sensors with a
quantum efficiency above 60% and low dark noise are
potential candidates for mobile robotic platforms oper-
ating outdoors in relatively low light, when considering
algorithms that rely on strong features like edges. In con-
trast, most of the low performance sensors tested had a
quantum efficiency of 50% or less. The lenses used with
these cameras were the Kowa LM5JC10M with a 5mm
focal length
Apart from the Basler sca1400-gm, we also report re-

sults from the usage of a thermal camera, which in our
case is the Thermoteknix Miricle 307KS camera, of res-
olution 640× 480.

3.4 Test Procedure

The testing procedure involves evaluating the PFEL
method under varying lighting conditions at night for the
Basler sca1400-gm and the Thermoteknix Miricle ther-
mal cameras mounted to the vehicle. For each combina-
tion of lighting conditions and cameras, the same path is
driven around the environment. The autonomous vehi-
cle is used for this purpose as it has demonstrated high
repeatability and accuracy in hundreds of demonstra-
tions in the test area. The ground truth localiser used
for the autonomous vehicle is based on a particle filter
laser beacon system. Independent tests of the system



demonstrate accuracies between 5cm to 20 cm depend-
ing on the local beacon density. We have found these
accuracies to be adequate for undertaking autonomous
materials handling tasks.
Since the internal map used by the vision-based lo-

caliser consists of external infrastructure edges (Figure
7), the vehicle starts its mission outside its parking shed
to allow the vision system to localise. The vehicle then
conducts a mission involving reversing to picking up its
payload, circling the test environment, reversing in to
drop off the payload, and then lining up to reverse into
the shed to park and shutdown. We show results from
the start location to the park location which is inside
the building. We let the localiser run inside the building
to examine the drift in the localiser once it has lost its
references.

4 Results

The lighting parameters tested for the thermal and vis-
ible cameras were:

• no site or vehicle lights

• vehicle lights only

• site lights only

• both vehicle and site lights

For each combination of lights and cameras, a set of
figures is presented in this section. These show - the path
comparison between the ground truth localiser (shown
in red), edge-based localiser (shown in green) and wheel
odometry (shown in blue); the error between the edge-
based localiser and ground truth; histogram of the er-
rors over the run; and a sample image from the camera.
For the path comparisons, the start locations are shown
where the blue circles appear and the end is at the top
left of the figures.
To provide a reference to the integrity of the vision-

based localiser, a trial run was conducted during a
sunny day when illumination conditions were considered
favourable. Figure 9 shows the resulting path compari-
son to the ground truth localiser.

4.1 No Site Lights

We arranged for the building and security lights to be
turned off for the tests in this section. The only constant
light source for all tests was from a screen mounted on
the side of the vehicle used for monitoring the vehicle’s
systems. Figure 10 shows the environment from a build-
ing webcam with site lights off and the vehicle lights on.
The light at the front (left) is an orange system indicator
light and appears bright in the figure due to the webcam
overexposing the image. The onboard cameras cannot
see these dim lights and they have a negligible effect on
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Figure 9: Performance of the vision localiser during a
cloudy day with relatively uniform lighting across the
test environment. This is used as a benchmark for com-
paring the night trials with. Note, this was undertaken
with manual driving. The blue circle in (a) represents
the starting point of the test run.

environment illumination. The higher light is the for-
ward facing driving light and the lower is the computer
screen.

Figure 10: The test environment with vehicle lighting
and no site lighting.

Visible Camera Results

The results in this section are for the visible camera’s
localisation performance compared to the laser-beacon
localiser. Figure 11 was undertaken with no site or ve-
hicle lights and Figure 12 is with only vehicle lights.

Thermal Camera Results

The thermal camera results are included to evaluate how
well the vision localiser can process the different modal-
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Figure 11: Performance of the vision localiser with no
site lights or vehicle lights.
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Figure 12: Performance of the vision localiser using only
vehicle lighting.

ity and for completeness (Figures 13 and 14). No addi-
tional pre-processing steps were undertaken on the ther-
mal image stream before generating position estimates.

4.2 Site Lights

In these tests, the site lights were activated. These con-
sist of standard external shed lights and personal door
lights. Figure 15 shows a view from a building webcam
with the site and vehicle lights on. Note the vehicle’s
side lights illuminating the shed.
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Figure 13: Performance of the thermal camera localiser
with no lighting.
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Figure 14: Performance of the thermal camera localiser
using only vehicle lighting.

Visible Camera Results

The visible camera results are shown in this section in
Figure 16 with no vehicle lights and Figure 17 with ve-
hicle lights adding illumination to the scene.

Thermal Camera Results

This section shows the results from the thermal camera
with no vehicle lighting in Figure 18 and with vehicle
lighting in Figure 19.



Figure 15: The test environment with site and vehicle
lighting.

55

60

65

70

75

80

85

105 110 115 120 125 130 135 140 145

y 
(m

)

x (m)

Laser Ground Truth
Vision Localizer

 Wheel Odometry

(a) Path comparison

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400 1600

Es
tim

at
ed

 p
os

iti
on

 e
rro

r (
m

)

Distance travelled (m)

Error between Vision Localizer and lpose

(b) Path error

0

50

100

150

200

0 0.5 1 1.5 2
meters

Histogram of the Euclidian position error between lpose and vision

(c) Error histogram (d) Camera view

Figure 16: Performance of the vision localiser with site
lights and no vehicle lights.

4.3 Discussion

The results in Table 1 summarise the localisation per-
formance. We can see that the best results in terms of
mean error (defined by the mean absolute Euclidean dis-
tance for all points) and standard deviation are obtained
when the vehicle lights are on and the site lights are off.
Notice that this result is only approximately 20% worse
than that obtained for the best day-time run (indicated
by the row “Day”). The performance of the visible cam-
era with no lighting except for the screen mounted on the
side of the vehicle is interesting. In images with a strong
light source such as roadside or building lights, there is a
wide contrast in the image from darkness to potentially
the bright light source itself. Consequently, edge extrac-
tion is inconsistent around the environment depending
on the type and coverage of the lighting. Whereas the
onboard screen provides diffuse illumination across the

55

60

65

70

75

80

85

105 110 115 120 125 130 135 140 145

y 
(m

)

x (m)

Laser Ground Truth
Vision Localizer

 Wheel Odometry

(a) Path comparison

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400

Es
tim

at
ed

 p
os

iti
on

 e
rro

r (
m

)

Distance travelled (m)

Error between Vision Localizer and lpose

(b) Path error

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2
meters

Histogram of the Euclidian position error between lpose and vision

(c) Error histogram (d) Camera view

Figure 17: Performance of the vision localiser using site
and vehicle lighting.
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Figure 18: Performance of the thermal camera localiser
with site lights and no vehicle lighting.

scene, the edges are more consistent in brightness.

On the other hand, when the site lights are on, the
vehicle lights do not bring as much benefit, as expected.
Nonetheless, a visual analysis shows that the vehicle
lights do help in reducing the apparent effect of the point
source illumination and overexposure of the site lights
on the camera, even though this did not influence signif-
icantly the results.

Although the thermal camera provides good images,
this modality does not render sharp enough edges for the
algorithm. This is illustrated by the poor results in the
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Figure 19: Performance of the thermal camera localiser
with site and vehicle lighting.

thermal rows in Table 1, in particular where the particle
filter diverges (e.g. Figure 18). Adjusting the filtering
parameters does not aid significantly, as it causes an ex-
cessive number of “false” edges, which are not included
in the 3D model. It is also clear in the figures that
the different lighting methods did not affect the thermal
camera images, which is to be expected. This is evident
from the high standard deviation and by analysing the
cross-track error compared to the ground truth. Even
though the values in Table 1 appear as though some
lighting scenarios gave reasonable performance, in prac-
tice the resultant position estimates were variable since
the thermal images were not clear enough for the vision-
based localiser.
All figures show that the results are degraded the most

whilst the vehicle was cornering. The main reason is due
to the amount of time the sensor needs for the incident
light to charge each pixel, and under fast rotation the
image quality decreases compared to straight driving.
All the other cameras tested (reported in Section 3.3)

did not yield any meaningful results, with the algorithm
diverging from the start. Therefore, those results are not
reported.

5 Conclusions

We have evaluated different types of common lighting
available to a vehicle working around an industrial site,
for it to be able to localise itself using onboard image-
based localisation. A suitable vision-based localisation
method that has demonstrated good performance in the
test environment under daytime illumination, includ-
ing sunny, cloudy and dusty days, was used. The in-

put image stream came from an off-the-shelf visible-
light monochrome camera and a thermal infrared cam-
era. The different lighting conditions included the faint
glow from a computer monitor on the side of the vehi-
cle, vehicle operating lights, and site lights. Tests un-
der different lighting conditions were conducted during
night time autonomous vehicle operations at an indus-
trial site. In general, the visible-light camera showed
the best performance with only vehicle lights and no site
lights. This is mainly due to the more consistent lighting
across the scene from the local source, rather than large
point sources on infrastructure lighting which effect the
camera’s exposure compensation across the image which
tends to provide more localised bright and dark areas.
Depending on the vehicle operation and local environ-
ment at the time, this setup could be sufficient for au-
tononomous control of the vehicle. One aspect of future
work will be to examine the possibility.
As expected, the camera selection has a critical ef-

fect on the algorithm’s performance. A low sensitiv-
ity camera provides sufficient image information. Before
converging to the Basler sca1400-gm, several tests were
made with a number of different cameras, most of which
were not satisfactory. Our tests indicated that sensors
with a relatively high quantum efficiency (above 60%)
and low dark noise can potentially be considered candi-
dates for mobile robotic platforms operating in relatively
low light outdoors. This, of course, depends on the na-
ture of the algorithm and the task in hand. The thermal
camera’s performance was noticeably poor which high-
lights the need to tune the localisation technique to the
camera. In this case, either the localisation algorithm
needs to be tuned to allow the fuzzier edges appearing
in the image to be tolerated, or a preprocessing step in-
troduced to sharpen the edges. These possibilities, and
the possibility of fusing the different image streams will
also be investigated as part of future work.
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Table 1: Summary of the accuracies (in metres) of different lighting conditions and cameras on localisation.
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