
Partitioning the Input Domain for Classification
Adrian Rechy Romero⇤†, Srimal Jayawardena⇤, Mark Cox⇤ and Paulo Vinicius Koerich Borges⇤

⇤Autonomous Systems Laboratory, CSIRO, Australia
†Autonomous Systems Lab, ETH Zurich

Abstract—
We explore an approach to use simple classification models to

solve complex problems by partitioning the input domain into
smaller regions that are more amenable to the classifier. For
this purpose we investigate two variants of partitioning based on
energy, as measured by the variance. We argue that restricting
the energy of the input domain limits the complexity of the
problem. Therefore, our method directly controls the energy in
each partition.

The partitioning methods and several classifiers are evaluated
on a road detection application. Our results indicate that par-
titioning improves the performance of a linear Support Vector
Machine and a classifier which considers the average label in
each partition, to match the performance of a more sophisticated
Neural Network classifier.

I. INTRODUCTION

Literature shows that as a classification task becomes more
difficult, complex classifiers such as Convolutional Neural
Networks [1], [2] and Deep Learning [3], [4] have been used
due to their ability to approximate non-linear functions of
the input. Rather than using such classifiers, we approach
the problem by applying simpler classification models on
partitions of the problem’s input domain. While a simple
model may not be adequate to solve a problem globally, it
can be sufficient on local regions of the problem.

Consider the two-class XOR classification problem in
Fig. 1a. It cannot be classified correctly using a linear classifier
since the decision boundary separating the two classes is non-
linear. However, the data can be partitioned as in Fig. 1b
such that each partition has a linear decision boundary. Now
separate linear classifiers can be applied locally on each
partition to correctly classify the data.

This paper explores an energy based partitioning of the
input domain with a direct control of the final variance per
partition. By defining the maximum variance per partition the
partitioning method does not require the number of partitions
to be known a priori. We follow the assumption that con-
trolling the energy per partition can be used to modulate the
complexity of the problem to make it suitable for different
classifiers. For instance, an energy level suitable for a linear
Support Vector Machine (SVM) classifier [5] would be one
where the data classes in each partition are linearly separable.
A simpler classifier that uses the average class label of the
partition for its predictions would benefit from an energy level
where most of the data in the partition belong to a single
class. Experimental results (Sections V and VI) show that
input domain partitioning improves the classification results

A" B"

B" A"

Non'linear"decision"boundary"

(a) No partitions.

A" B"

B" A"

Linear"decision"boundaries"

Par11on"
1"

Par11on"
2"

(b) With partitions.

Fig. 1: The figure illustrates a thought experiment on how
partitioning helps a linear classifier. Fig. 1a shows a two
class classification problem where the decision boundary is
non-linear. A single linear classifier would not perform well
globally on the entire problem as there is no linear boundary.
However, a linear classifier would be adequate locally on
partitions of the data (Fig. 1b) where each partition has a linear
decision boundary.

of these simple classifiers to a level comparable with a more
sophisticated Neural Network classifier.

For a road detection application, partitioning the pixel
information was shown to accommodate the variations in
pixel colour and position. By partitioning the input domain
image-wise we show how an ensemble of pixel-wise classifiers
can be trained to account for contextual information in the
image. Finally, two stage partitioning (initially image-wise
and subsequently pixel-wise) is shown to further increase the
performance of the classification.

We make the following contributions:
1) Investigate the effects of unsupervised partitioning prior

to classification on different classifiers.
2) Compare two variants of partitioning that directly con-

trol the amount of energy per partition and do not require
the number of partitions to be known a priori.

II. RELATED WORK

Partitioning has been used to solve complex problems using
simple models. The input domain has been partitioned by
encoding local binary features using a random forest [6]
in order to align faces using linear regression. Partitioning
has also been used for colour quantisation of images [7] by
recursively performing a binary division of the colour palette
along the direction of maximum variance until a predetermined
number of colours (i.e. the number of partitions) is obtained.
Our work uses a similar partitioning method but defines the

maximum amount of energy in each partition rather than the
number of partitions. Additionally we propose an alternative
method for the binary division (Section III-B2).

Standard clustering methods such as k-means and Gaussian
Mixture Models (GMMs) [5] could also be used to partition
the data. Typical implementations require the number of
clusters k to be known beforehand although variants exist [8],
[9], [10] that can learn the number of clusters from the
data. The clusters generated by these methods depend on
the initialisation of the cluster means and the solution is not
globally optimal. The partitioning method used in this paper is
fully deterministic as it does not require such initialisation and
consistently gives the same solution. The number of partitions
does not need to be known a priori as the partitioning is based
on the expected variance or energy in the resulting partitions.

III. PARTITIONING

The strategy we employ for partitioning the input domain
constructs a binary tree using a recursive procedure. We aim
to minimise the energy in each partition, as measured by its
variance, in order to reduce the complexity of the input domain
for each classifier. Consider the two-dimensional example in
Fig. 2. Projections of the data along the direction of maximum
variance (Fig. 2a) are compared to a threshold (Fig. 2b) in
order to obtain two partitions (Fig. 2c) with less energy.
Dividing the input domain along the direction of maximum
variance ensures that partitioning is done over the data rather
than irrelevant regions of the input domain and that a greater
reduction in energy is obtained per division. Fig. 2d shows
the tree after the first division. The process is continued
recursively until the variance of the leaf nodes reaches an
energy level suitable for the classifier. An adequate energy
level can be selected through validation techniques such as
cross-validation.

Selection of the direction of projection is explained next.

A. Direction of projection

We expect the largest variance reduction by splitting the
data along the direction with the highest amount of variance.
As used in [11] the direction of projection which maximises
the variance of the projected samples is the first eigenvector
of the covariance matrix. This can be explained as follows.

Consider a training dataset S where each sample s 2 S
has a feature vector x

s

2 Rd⇥1. We want to divide the set of
samples in node n, denoted as C

n

✓ S into two new nodes
n + 1 and n + 2, with the sets of samples C

n+1 ⇢ C
n

and
C

n+2 ⇢ C
n

respectively, such that C
n+1 [C

n+2 = C
n

and
C

n+1 \ C
n+2 = ;.

The variance of the node samples along a unit vector û is
X

s2Cn

((x

s

� x̄

n

)

T

û)

2 (1)

where x̄
n

is the mean value of the samples in the node.
Consider the zero-mean data matrix

¯

X

n

= X

n

� x̄

n

T 2 Rd⇥|Cn| (2)

(a) The direction with the maximum vari-
ance (Section III-A) is considered in order
to partition samples in a node.

τ
1

(b) Sample projections along the direc-
tion in (a) are thresholded using ⌧1 (Sec-
tion III-B) to split the node data.

(c) Partitioned node data corresponding to
(b).

1

32
v2 > vth > v3

(d) Samples in node 1 are partitioned as
in (c) to obtain child nodes 2 and 3. The
process is continued recursively for leaf
node 2 which has a variance v2 > vth.

Fig. 2: A two dimensional example of the partitioning proce-
dure described in Section III.

where the node data matrix

X

n

=

⇥
x1,x2, . . . ,x|S|

⇤
2 Rd⇥|S| (3)

is normalised row-wise when using features with different
ranges. The covariance matrix can be written as ⌃ =

¯

X

n

¯

X

T

n

and the variance of the projected samples in (1) can expressed
in terms of the covariance matrix as û

T

⌃û. Since û

T

û = 1

for a unit vector, maximising the variance of the projections
is equivalent to maximising the objective

max

û

û

T

⌃û

û

T

û

s.t. û

T

û = 1 (4)

Since ⌃ is symmetric (4) corresponds to maximising the
Rayleigh quotient of ⌃ and û. The solution of (4) is û = u1,
where u1 is the first eigenvector of ⌃ corresponding to the
largest eigenvalue �1 [7]. By considering projections of the
node data along u1

p

n

=

¯

X

T

n

u1 2 R|Cn|⇥1 (5)

partitioning is reduced to a one-dimensional operation.
A projection threshold ⌧

n

is used to split the node data
such that projected samples that are greater than the threshold
are assigned to the first child and the rest are assigned to the
second child, creating the new nodes

C
n+1 = {s 2 C

n

: p
n,s

> ⌧
n

}
C

n+2 = {s 2 C
n

: p
n,s

 ⌧
n

} (6)

Methods for selecting ⌧
n

are described in Section III-B.
The nodes are split recursively until samples in the leaf

nodes have a variance lower than a variance threshold v
th

.
In [7] the first eigenvalue �1 of the data is used to represent
the variance of a node based on its direction with maximum
variance. Alternatively, the trace, which corresponds to the
sum of eigenvalues

P
j

�
j

gives a description of the energy
of the node along all directions.

B. Projection threshold

We consider the following methods for selecting the split-
ting threshold ⌧

n

in (6).
1) Mean: This is the method used by [7]. The projection

threshold is set as the projection of the mean value of the data
on u1. Since the data is centred prior to the projection, the
projection threshold ⌧

n

= 0 8n.
Partitioning based on the sign of the projection along the

first principal direction has been shown [12] to be an upper
bound to k-means clustering for k = 2. Therefore, using the
mean to split the data is an approximation of applying k-means
with k = 2 successively. However, this splitting method does
not guarantee a minimum energy split as shown in Fig. 3.
Since the division does not minimise the variance of the child
nodes, further divisions are required to reach the variance
threshold. A greater number of divisions results in a larger
tree that takes longer to traverse for a test sample at runtime.

2) Variance minimization: This method checks every pos-
sible division of the node data and selects the projection
threshold that minimises the combined variance along u1.
The sorted projections q

n

= sort(p
n

) are searched to find
the sample division

r = argmin

i

(var(q
n,(1:i)) + var(q

n,(i+1):end)) (7)

that yields the minimum combined variance. The projection
threshold

⌧
n

=

q
n,r

+ q
n,(r+1)

2

(8)

is selected as the mid point between the two samples that
encompass the optimal division. This method guarantees that
the combined variance of the partitions along the direction

τ
mean

τ
vm

(a) The variance based threshold ⌧vm sep-
arates the projections of the data in Fig. 2c
better than the mean ⌧mean.

(b) Sub-optimal partitioning of Fig. 2c
when the mean is used to threshold sample
projections in (a).

Fig. 3: An example where the variance based threshold (Sec-
tion III-B2) performs better than the mean based approach
(Section III-B1).

of projection is minimised. A better node division tends to
achieve a comparable performance with less nodes as seen in
the experimental results (Section VI).

C. Characteristics of the partitioning method

The energy based partitioning method has the following
characteristics:

1) The size of the tree can be defined based on a variance
threshold instead of the number of nodes, as opposed to
algorithms such as k-means, which require the number
of partitions to be known a priori. This allows parti-
tioning to be done based on the expected energy in a
partition.

2) The method does not require an initialisation as with
clustering methods such as k-means and GMMs. There-
fore the produced results are deterministic.

3) Finding the corresponding partition for a new sample by
traversing the node tree has a maximum complexity of
O(depthOfTree ⇤ d).

IV. CLASSIFICATION THROUGH PARTITIONING

Having partitioned the data, it is possible to perform classi-
fication by considering the probability of a class label in each
partition. The probability of a test sample s

T

having label y
given that it belongs to a node n is

p(s
T

= y|n) = |C
n

\ Y |
|C

n

| (9)

where Y is the set of training data-samples with label y, |C
n

\
Y | is the number of training samples in the node with label
y and |C

n

| is the number of training samples in the node.
Since the variance within a partition is expected to be low, a
given partition is more likely to have data from the same class.

Therefore, considering a maximum likelihood estimate, it is
possible to use the average label value of a partition to predict
the class of a sample assigned to it at test time. Alternatively
other classifiers may be trained on partitions of the input space
as shown in Section V-D.

V. EXPERIMENTS ON ROAD DETECTION

Experiments were done on a road detection application to
validate the assumption that partitioning reduces the input
domain into one that is suitable for the classifier. For this
purpose we used the KITTI Vision Benchmark road dataset
[13].

Three different approaches for partitioning were tested.
Partitioning was first applied directly on the pixel data. Parti-
tioning was also used to divide the dataset image-wise, making
groups of similar images. Finally, both partitioning approaches
were combined with an image-wise division of the dataset
performed before a pixel-wise partitioning was done on each
of the image groups.

A. Pixel-wise partitioning

The pixel information of the dataset was partitioned and
a different pixel-wise classifier was trained on each parti-
tion. The feature vector for partitioning x

s

= [r, g, b, x, y]T

included the three RGB channels r, g and b and the pixel
coordinates x and y.

The purpose of the pixel-wise partitioning is to enhance the
classifiers by dividing the classification task into simpler local
sub-problems as shown in the example of Fig. 1.

For this experiment, the images were down-sampled into
16⇥ 64 pixel images to reduce the time required for training
and testing.

B. Image-wise partitioning

As a different approach, the dataset was partitioned into
groups of similar images. Each image was used as a sam-
ple where the feature vector was built by vectorizing the
three RGB channels of the entire image such that x

s

=

[r1, g1, b1, ..., rxy, gxy, bxy]
T . Although partitioning was an

image-wise operation, the classifiers still operated on a pixel-
wise manner.

Partitioning upon the whole image can be used to aid the
pixel-wise classifiers to account for contextual information
without increasing their complexity. Since images with a
similar colour distribution are grouped into the same partition,
a classifier that is trained upon the images from a single
partition would specialise on a particular kind of image.

The utility of context information is illustrated in Fig. 4
where a pixel-wise classifier is given the task of determining
whether a pixel, given its colour and position, belongs to a
circle or a triangle. Given that both the circle and the triangle
are green, the pixel information is not enough to determine the
shape to which it belongs to. When trained on context-aware
partitions, a classifier would only work on images of either
triangles or circles and would be able to determine the figure
to which the pixel belongs.

Colour: Green
Position: (60,60)
Label: Circle

Colour: Green
Position: (60,60)
Label: Triangle

Fig. 4: A classifier based on pixel colour and position is unable
to define the object to which a pixel belongs without using
context information.

This application for partitioning was evaluated on road
detection. The road images were randomly rotated to further
increase the complexity of the problem. By changing the
location of the road in the image, classifiers that rely on the
pixel coordinates as a feature would be encumbered since they
would no longer benefit from the fact that the road is usually
in the lower part of the image. We expect the partitioning to
group images with the same rotation angle together, allowing
the pixel coordinates to become a useful feature again.

The images were resized into 10⇥ 10 pixel images for the
partitioning while the classification was performed on images
with a size of 100⇥100 pixels. Square images were chosen in
order to avoid the classifiers from using the different ranges
in pixel coordinates to detect the rotation of the image.

C. Two-step partitioning

Pixel-wise partitioning and image-wise partitioning were
combined in this experiment to integrate the strengths of each
individual approach. Image-wise partitioning should reduce
the variance in rotation and colour distribution of the whole
image while the pixel-wise partitioning should reduce the
variance of the pixel colour and position.

The classifier presented in Section IV was used (further
details in Section V-D1) with a variance threshold v

th

for
the pixel-wise partitioning set as 1% of the initial variance,
while cross-validation was used to find the optimal variance
threshold for the image-wise partitioning.

D. Classifiers

Three classifiers were tested. The first one based its predic-
tion upon the partitioning alone while the remaining used the
three RGB channels of each pixel and the pixel coordinates as
input parameters to perform a pixel-wise prediction.

1) Mean value of the labels in the partition (Average

label method): This classifier finds the partition to which the
test sample belongs to and assigns the average value of the
labels of the training samples that belong to that partition
for the classification. Given binary labels, where road pixels
are assigned label 1, this classifier yields the probability of a
pixel from being road as stated in Section IV. This classifier

works best when the partitioning reduces the input domain
into sections that have a single label per partition.

The classifier changes depending on the data that is be-
ing partitioned. In the case of a pixel-wise partitioning the
classifier would consist of single pixel labels obtained from
averaging all the pixel labels from the training data that lie
in the same partition. When partitioning on an image-wise
manner each partition consists of a collection of images where
each image has been assigned a collection of pixel labels
that form a labelled image. The classifier for an image-wise

partitioning averages all labelled images from the training data
in the partition and thus, the prediction is also an image.

2) Linear SVM: A linear Support Vector Machine Classifier
[5] was also tested. To adapt the data for this classifier the
partitioning method should reduce the input domain so that
there is a single linear decision boundary on each partition, as
shown in the example of Fig. 1. The classifier used is part of
the MATLAB Statistics and Machine Learning Toolbox [14].
The command fitcsvm was used with the following settings:

• Two-class classification
• Misclassification cost = 1
• No cross validation was performed on the classifier
• Kernel function: linear
3) Neural network: A Neural Network was used to test

the effect of partitioning on a higher capacity classifier. This
classifier is already non-linear and thus should not benefit from
the pixel-wise partitioning. Its performance can be set as a
benchmark to validate if the previous classifiers were suc-
cessfully enhanced through partitioning. The Neural Network
could still benefit from the infusion of context information
through the image-wise partitioning since it remains a context-
blind classifier due to its pixel-wise behaviour

For this classifier the MATLAB’s Neural Network Toolbox
was used, with the patternnet() and train() commands [15].
More specifically, the classifier had the following parameters:

• Hidden layer size = 5
• Dataset was divided randomly. 70% was used for training,

15% for testing and 15% for validation as defined for the
default values.

• Training function = trainscg (Scaled conjugate gradient
backpropagation)

E. Performance Evaluation

Performance evaluation was based on pixel-based metrics.
Similar to metrics from [13], the scoring was based on the
number of True Positives TP, True Negatives TN, False Pos-
itives FP and False Negatives FN. Through these parameters
it was possible to extract the F1-measure and the Accuracy

according to the following equations:

Precision =

TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 =

(2)Precision Recall

Precision+Recall
(12)

TABLE I: Classification results when using a pixel-wise

partitioning. The first row in each segment corresponds to
classification without partitioning. Partitioning improved the
classification results for the Avg. Label method and the Linear

SVM. The Neural Network classifier did not benefit from
partitioning since it already accounts for the non-linearities
of the data.

Partitioning Classifier vth No. nodes F1 Acc.
None Avg. label 1 1 0.3064 0.1809
Mean Avg. label 0.01 13567 0.8512 0.9444

Var. min. Avg. label 0.01 11657 0.8467 0.9433
None Linear SVM 1 1 0.5173 0.7963
Mean Linear SVM 0.01 13567 0.8806 0.9565

Var. min. Linear SVM 0.01 11657 0.8786 0.9557
None Neural net 1 1 0.8675 0.9518
Mean Neural net 0.1 133 0.8755 0.9538

Var. min. Neural net 0.1 123 0.8763 0.9543

Accuracy =

TP + TN

TP + FP + TN + FN
(13)

In the case of the Average Label method (Section V-D1) and
the Neural Network classifier (Section V-D3), where the output
is a confidence map, the scoring equations are a function of
the classification threshold ⌘. The value of ⌘ was chosen to
maximise the F1-measure,

⌘ = argmax

�

F1(�) (14)

Cross-validation was used to optimise upon the amount of
partitioning performed for each classifier. The scores shown in
Section VI correspond to the average score among the cross-
validation buckets that yielded the best F1-measure.

VI. RESULTS

The following results were obtained for the experiments in
Section V.

A. Pixel-wise partitioning

The Average label and the Linear SVM classifiers showed an
improvement in performance through a pixel-wise partitioning

while the performance of the Neural Network remained the
same. Table I shows the performance of the different classifiers
with and without partitioning. The first row in each of the
segments corresponds to classification without partitioning.
The remaining rows show the classification performance when
partitioning with different splitting methods. The best score for
each section is highlighted. For a qualitative analysis, Fig. 5
shows several examples where the different classifiers were
used with and without partitioning, confirming the quantitative
results.

The improvement obtained for the Average label method
and the Linear SVM classifier indicates that the partitioning
successfully reduced the input domain to make it suitable for
each classifier. The Average label method required partitions
with a single label while the SVM allowed multiple labels
but required a single linear boundary between the classes.
The results show that the assumptions were correct since
partitioning enhanced the classifiers up to a performance level

(a) Test image.

(b) Average pixel labels with no partitioning. The probability of every pixel to belong to the road is very low.

(c) Average pixel labels with partitioning.

(d) SVM with no partitioning.

(e) SVM with partitioning.

(f) Neural Network with no partitioning.

(g) Neural Network with partitioning.

Fig. 5: Pixel-wise partitioning results (Section VI-A).

TABLE II: Classification results when using image-wise par-

titioning. The first row in each segment corresponds to clas-
sification without partitioning. The nan result for the SVM

corresponds to a classification where no road labels were
predicted. Partitioning improved the performance of the three
classifiers.

Partitioning Classifier vth No. nodes F1 Acc.
None Avg. label. 1 1 0.3321 0.5136
Mean Avg. label. 0.2 349 0.6135 0.8636

Var. min. Avg. label 0.3 221 0.6147 0.8401
None Linear SVM 1 1 nan 0.8233
Mean Linear SVM 0.2 349 0.5069 0.8352

Var. min. Linear SVM 0.2 221 0.5056 0.8289
None Neural net 1 1 0.7197 0.8841
Mean Neural net 0.7 11 0.7576 0.9102

Var. min. Neural net 0.7 11 0.7551 0.9074

that is comparable to the Neural Network. Meanwhile, the
Neural Network did not show significant improvement since
it already accounted for the non-linearities of the problem.

B. Image-wise partitioning

Improvement in classification performance was also ob-
served through image-wise partitioning (Section V-B). Table II
shows the performance of the different classifiers with and

without partitioning. Fig. 6 shows a visualization of the effect
of partitioning on the different classifiers. For Fig. 6b the
partition that corresponded to the test image was found and the
training samples that belonged to that partition were averaged,
which yielded an image with the same rotation angle and
similar colour distribution as the test image, indicating an
effective partitioning.

Both the Average label method (which in this experiment
assigned labelled images rather than pixels) and the Linear

SVM once again benefited from partitioning. In the case of
the Linear SVM without partitioning it did not label a single
pixel as road, yielding TP = FP = 0 which caused (10) and
(12) to fail to compute. Meanwhile, the Neural Network only
had a slight improvement which was not sufficient to achieve
the performance from the non-rotated experiment. This was
due to the reduction of data samples on each partition since
the images of the dataset were only rotated to one angle. Once
grouped into similarly rotated images, the amount of images
available for each partition’s classifier was only a subset of
the original dataset.

(a) Test image

(b) Average image from cor-
responding partition.

(c) Average image labels
with no partitioning.

(d) Average image labels
with partitioning.

(e) SVM with no partition-
ing

(f) SVM with partitioning.

(g) Neural Network with no
partitioning.

(h) Neural Network with
partitioning.

Fig. 6: Image-wise partitioning results (Section VI-B).

C. Partitioning method

For both the pixel-wise partitioning (Table I) and the image-

wise partitioning (Table II), partitioning was performed with a
Mean-splitting (Section III-B1) and a Variance Minimization

approach (Section III-B2) to divide the data of each node. The
performance, as given by the F1-measure and the accuracy,
did not change much. However, the experiments that used
the Variance Minimization method required fewer nodes to
achieve this score. Having less nodes improves the partitioning
efficiency at runtime since a test sample has to traverse a
smaller tree to find its corresponding partition.

D. Two-step partitioning

The results of the combination of image-wise partition-

ing with pixel-wise partitioning can be seen in Table III.
The combination enhanced a simple averaging classifier to
a performance level comparable to a Neural Network (see
Table II). The performance without any partitioning was poor,
with the classifier assigning the same label to every pixel.
Introducing the pixel-wise partitioning increased the perfor-
mance of the classifier. Furthermore, the combined partitioning
increased the performance even further. Although the image-

wise partitioning divided the dataset into groups of similarly

TABLE III: The table shows the progressive improvement in
classification results with two-step partitioning for the Average

Label classifier. The first row corresponds to no partition-
ing. The second row shows improved results with pixel-wise

partitioning. The last row shows a further improvement in
results with image-wise partitioning followed by pixel-wise

partitioning.

Partitioning Image-wise vth Pixel-wise vth F1 Acc.
None 1 1 0.3003 0.1767

Pixel-wise only 1 0.01 0.6559 0.8625
Both 0.8 0.01 0.7166 0.8969

(a) Pixel-wise

partitioning

alone.

(b) Image-wise
followed by
pixel-wise
partitioning.

Fig. 7: Two-step partitioning results (Section VI-D).

rotated images, the result still differs from the one shown in
Table I due to the reduced number of images trained for each
classifier (the groups of images with a same rotation angle
have less images than the original dataset in which all the
images belonged to the same group).

A visual example of the effect of the addition of the
image-wise partitioning is shown in Fig. 7. In comparison to
using only a pixel-wise partitioning, the combination of both
partitioning approaches reduced the amount of false negatives,
such as misclassified sidewalk pixels which a purely pixel-
based classifier could not differentiate from the road.

VII. CONCLUSION

In this paper we explored the use of input domain parti-
tioning to enhance the performance of simple classification
models. We used an energy based partitioning that directly
controls the variance per partition, following the assumption

that restricting the energy level of a partition modulates the
complexity of the problem to make it suitable for the classifier.
Experimental results validate the assumptions by improving
the performance of a linear Support Vector Machine and
a classifier that assigns the average value of the labels in
the partition for its predictions. Partitioning enhanced the
performance of these classifiers to a level comparable to results
obtained using a more sophisticated Neural Network classifier.

The partitioning approach presented in this work does not
directly consider the class distribution during partitioning.
An interesting future work is to partition in a supervised
manner where the division of the data could be based on the
distribution of the class labels.

REFERENCES

[1] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in IJCAI Proceedings-International Joint Confer-

ence on Artificial Intelligence, vol. 22, no. 1, 2011, p. 1237.
[2] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and

L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Computer Vision and Pattern Recognition (CVPR), 2014

IEEE Conference on. IEEE, 2014, pp. 1725–1732.
[3] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural

networks for image classification,” in Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 3642–
3649.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-

mation processing systems, 2012, pp. 1097–1105.
[5] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[6] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps
via regressing local binary features,” in Computer Vision and Pattern

Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 1685–
1692.

[7] M. Orchard and C. Bouman, “Color quantization of images,” Signal

Processing, IEEE Transactions on, vol. 39, no. 12, pp. 2677–2690, Dec
1991.

[8] G. Hamerly and C. Elkan, “Learning the k in k-means,” Advances in

neural information processing systems, vol. 16, p. 281, 2004.
[9] D. Pelleg, A. W. Moore et al., “X-means: Extending k-means with

efficient estimation of the number of clusters.” in ICML, 2000, pp. 727–
734.

[10] M. Song and H. Wang, “Highly efficient incremental estimation of
gaussian mixture models for online data stream clustering,” in Defense

and Security. International Society for Optics and Photonics, 2005, pp.
174–183.

[11] P. Heckbert, Color image quantization for frame buffer display. ACM,
1982, vol. 16, no. 3.

[12] C. Ding and X. He, “K-means clustering via principal component
analysis,” in Proceedings of the twenty-first international conference on

Machine learning. ACM, 2004, p. 29.
[13] J. Fritsch, T. Kuhnl, and A. Geiger, “A new performance measure

and evaluation benchmark for road detection algorithms,” in Intelligent

Transportation Systems - (ITSC), 2013 16th International IEEE Confer-

ence on, Oct 2013, pp. 1693–1700.
[14] “Matlab statistics and machine learning toolbox,” Natick, Massachusetts,

2015a.
[15] “Matlab neural network toolbox,” Natick, Massachusetts, 2015a.

