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Abstract— We investigate the problem of colourising a point
cloud using an arbitrary mobile mapping device and an
independent camera. The loose coupling of sensors creates a
number of challenges related to timing, point visibility and
colour determination. We address each of these problems and
demonstrate our resulting algorithm on data captured using
sensor payloads mounted to hand-held, aerial and ground sys-
tems, illustrating the ‘plug-and-play’ portability of the method.

I. INTRODUCTION

In the last decade we have seen a dramatic increase in the
development of mobile mapping systems, where a 3D geo-
metric representation of the environment is generated with
high accuracy. In this space, lidar-based systems are very
popular, finding application in robotics (vehicle navigation),
gaming (virtual reality), surveying, among other industries.
Key advantages of lidar sensing over its main competitor
(camera) are the invariance to lighting conditions and high-
precision range information, making lidars an excellent and
proven alternative for 3D mapping. On the other hand, a
fundamental drawback of lidars compared to cameras is
that they do not provide rich visual appearance information.
Depending on the application, this type of information is of
great benefit for human (and often machine) interpretation.
An obvious solution is to fuse data from lidar with camera
data, hence combining range with colour information. There
are a number of strategies to perform this fusion, and some
are tightly dependent on the devices and sensor setup. Our
goal in this paper is to create a practical solution that is
generic, and that can be applied to existing camera-less
platforms, by simply adding a camera to any existing lidar
3D mapping device.

Consider, for example, the 3D mapping devices shown in
Figure 1, to which we have added a camera. In this figure,
the mapping strategies range from having the mapping sensor
as hand-held, to mounted on aerial and ground platforms.
The ability to easily add colour to point clouds generated
by such different platforms has a number of advantages.
They include: (i) economic attractiveness, as existing camera-
less devices can be fitted with a camera, (ii) there is no
restriction on the camera type or modality provided that it
is of sufficient quality to generate reliable optical flow, (iii)
many modern mapping devices are designed to be mobile,
permitting increased colour accuracy from multiple candidate
colours per point, (iv) portability and platform independence.
These benefits serve as motivation for the method we propose
in this paper.
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In general, the fundamental process to achieve colourised
point clouds is to project the 2D camera images over the
3D points, such that colours (or other information such as
hyperspectral data) are assigned to each 3D point. In this
case, there are key fundamental challenges associated with
colourising point clouds, which are (i) clock synchronisation
between the lidar and the imaging device, (ii) determining
the visibility of points and (iii) intelligently determining
the colour assignments for each 3D point. To solve these
challenges, our basic assumption is that the camera-less
3D mapping device outputs a point cloud (i.e., the 3D
map) and the associated device’s trajectory t, as is the case
in modern simultaneous localisation and mapping (SLAM)
algorithms [1] [2] [3] [4]. In this context, we propose the
following solutions:

A. Challenge 1: Clock Synchronisation

The camera, device and other modalities need to share a
common clock before any processing can be performed.

To achieve synchronisation, we assume that the computed
trajectory t can be transformed to a camera trajectory using
a fixed rigid transformation. In Section III-A we outline
an algorithm for temporally synchronising captured camera
video with the computed device trajectory using the yaw-rate
of the device and an estimate of yaw-rate computed from the
camera video. The yaw-rate of the device can be computed
from the device trajectory itself or using the output from
an inertial measurement unit, if available. We then cross-
correlate the yaw-rates from the camera and mapping device
in order to obtain the temporal offset and scaling which relate
the two modalities.

B. Challenge 2: Visibility of Points

Determining which points are visible from a specific
viewpoint is crucial considering that the camera and the lidar
can be mounted far from each other. The example shown
in Figure 1e illustrates this scenario, where the camera is
attached to the front of the vehicle while the lidar is on top.

To solve the visibility issue, we use the algorithm proposed
in the seminal works of Katz et al. [8], [9], which does
not require estimating surface normals nor estimates of point
volumes. The algorithm applies a spherical reflection kernel
to each point such that points closest to the camera are
reflected to points that are furthest from the camera. A
point is classified as visible if its reflection is a member of
the convex hull of the reflected point cloud. The choice of
kernel and associated parameters affect the resulting visibility
determination. In Section IV we present a theorem which
shows that the linear kernel proposed in [8], [9] is not scale
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Fig. 1: Examples of mobile mapping devices with various lidar configurations, ranging from handheld (a-c), to aerial (d)
and ground (e) platforms. The original lidar device is highlighted in red, while the added camera (which is not connected
or synchronised to the lidar) is indicated by the green box. References for the lidar mapping devices: (a) Zebedee [2], (b)
CSIRO Revo, (c) ZebCam [5], (d) Hovermap [6], (e) Gator [7].

Fig. 2: Example illustrating the “transparency” effect in 3D
lidar point clouds. This transparency can cause points that
are occluded in the real world to be erroneously coloured
when projecting an image on the points.

invariant i.e. the scale of an object in the point cloud has
an effect on its visibility. We show that the exponential
kernel (also proposed in [9]) is scale invariant and achieves
consistent results as a consequence, finding application in
our colourisation problem.

C. Challenge 3: Colour Assignment

Once visibility is determined, the next challenge is how to
assign a colour to a 3D point from a set of colour candidates.
Considering mobile mapping (i.e., from a moving platform),
the problem lies in the fact that a reconstructed 3D point is
likely to have been seen in multiple video frames during data
collection, and the appearance of that point varies throughout
the acquisition process depending on the observation angle.
This problem is much more severe in continuous mobile
mapping than in traditional static “tripod” systems. Hence,
we propose a robust rolling average colour scheme that
can process colour observations sequentially, increasing the
processing speed.

After addressing challenges 1-3 above, we present experi-
ments illustrating our method for multiple types of platforms.
We empirically validate the algorithm using a variety of 3D
mapping systems, such as a hand-held device, a ground vehi-
cle, and an aerial vehicle. The environments scanned include
indoor offices, industrial buildings and open bushland. In all

cases, colourisation is done offline but can be done in real-
time, such that the processing time is less than the acquisition
time.

This paper is organised as follows. Section II provides a
short overview of the existing literature on colourising point
clouds. Section III outlines an algorithm for temporally syn-
chronising video frames with the device trajectory computed
from a 3D mapping device. In Section IV we outline how we
determine the points in the point cloud that are visible from a
specific camera position. The algorithm used to assign colour
to a point from a set of candidates extracted from video is
outlined in Section V. The experiments we performed using
our proposed algorithm are documented in Section VI. We
conclude the paper in Section VII.

II. RELATED WORK

Colourised point clouds are a common output of SLAM al-
gorithms that perceive using a camera (monocular [10], [11],
stereo [12]), RGB-D [13] or lidar and camera simultaneously
(monocular [14], [15], stereo [16], [17]). The primary focus
of these papers, however, is pose and map estimation rather
than the coloured point cloud. The colour of each point is
typically determined from a single observation i.e. closest
frame or first frame. Furthermore, the lidar and camera
SLAM algorithms assume that an object measured with lidar
can be seen by the camera. This is only universally true for
systems where the lidar and camera share the same principal
axis. Our approach performs a visibility analysis first and
uses only visible observations of a projected 3D point to
compute a final colour.

The surveying literature contains many papers where a
stationary tripod laser is integrated with a camera in order to
acquire detailed geometric and appearance information of a
historic or religious site e.g. [18], [19], [20]. The relationship
between the camera and the laser scanner can be rigid
[19] or non-rigid [18], [20]. A dense surface reconstruction
algorithm is used by Moussa et al. [18] to recover fine
3D details not captured by tripod mounted lidar scanners.
Point clouds can also be converted to a mesh structure which
allows texture information to fill in the space between 3D
points in the point cloud [18], [19]. Our algorithm only



produces a coloured point cloud where each point is assigned
a single colour.

It should be noted that many systems [18], [19], [20] cap-
ture high resolution still images as opposed to the video we
capture in our work. These systems typically use measured
scene information to position each image within the lidar
scans. Our method assumes a rigid transformation between
the lidar and camera which can be calculated a priori. We
also also estimate the temporal offset and scaling which
relates timestamps in the device trajectory to timestamps in
the captured video.

Identifying points in a point cloud which are visible from
a given viewpoint is a very challenging problem as a point
cloud contains no surface information in which to identify
occlusion. There exists a number of works which attempt to
fit a surface to the point cloud assuming that the synthesised
surface has certain properties [21]. For example, Xiong et
al. [22] recover a triangulated mesh from the point cloud
by optimising an `2,q objective containing a bi-linear term
representing the vertices of a mesh and the edges between
vertices. The `2,q term was chosen due to its robustness. An
alternative approach is to compute point visibility without
having to perform a surface reconstruction. The seminal work
of Katz et al. [8], [9] defines a hidden point operator which
permits the calculation of visible points via a convex hull
calculation. The computational complexity of the convex hull
calculation is O(N logN), making it attractive due to the large
number of viewpoints in the device trajectory. This algorithm
is used in our approach.

III. TEMPORAL REGISTRATION

It is important that the camera and mapping device are
synchronised before attempting to colourise the point cloud.
This is relatively straightforward when both devices share a
common clock and triggering. However, this automation is
not always practical or available, particularly if the camera
has been added to an existing system as is the case in our
work. To achieve synchronisation in these circumstances,
we assume that the device trajectory t is computed by
the mapping device (which is customary in modern lidar
based SLAM algorithms). It is also assumed that t can be
transformed to a camera trajectory using a fixed rigid trans-
formation. The rest of this section details our synchronisation
framework.

A. Camera and lidar Synchronisation

To synchronise the camera and the lidar data, we correlate
the yaw-rate obtained from the camera with the yaw-rate
extracted from t. The yaw-rate could also be obtained from
an inertial measurement unit (IMU) provided that the raw
IMU data is filtered using a complementary filter and the bias
is accounted for. Empirical testing has shown that significant
yaw motion is present when mapping realistic areas, such
that the signal-to-noise ratio (where yaw is the signal) is very
high. Roll or pitch (or a linear combination of roll-pitch-
yaw) could also be used in scenarios/environments where
sufficient yaw motion is not present. For the camera, optical

flow information is extracted to compute the yaw-rate. In our
implementation, we used the Kanade-Lucas-Tomasi (KLT)
feature tracks [23] [24] for the sparse optical flow, although
different algorithms can be employed.

The initial estimate of the image timestamps is computed
by sampling the device yaw-rate using linear interpolation.
We then perform an optimisation to solve for the time shift
and rate adjustment that maximises the cross-correlation
between the camera yaw-rate and the linearly interpolated
device yaw-rate signals. Given that the yaw-rate of a device
can be characterised as a high frequency signal with zero-
mean and low correlation between consecutive samples (see
the red and blue signals in Figures 3b and 3c for an
example), cross-correlating the yaw-rates of the camera and
t yields a very high distinct peak, as shown in Figure 3a.
This distinctiveness brings high robustness to the temporal
synchronisation.

Figures 3b and 3c illustrate an unsuccessful and a suc-
cessful example of synchronisation between the camera and
device yaw-rate. The absolute magnitude of the two yaw-rate
signals do not always match, but the relative overlapping of
the peaks indicates a good alignment in time. Poor synchroni-
sation can happen due to (i) too big of a discrepancy between
the start time of the video and lidar data recording or (ii) lack
of characteristic motion for the lidar/camera resulting in no
statistically significant information for optimisation (e.g., an
empty featureless corridor). Fortunately, the start time of the
video and lidar recording can be controlled and most real
environments contain enough features for adequate tracking
and synchronisation. Hence the erroneous situation shown in
Figure 3b can be avoided in practice.

B. Spatial Alignment

Now that the timestamps of the images are synchronised
with the device trajectory, it is now possible to obtain the
camera trajectory from the device trajectory. First, the device
trajectory is linearly interpolated at the image timestamps to
give us the pose of the device at the moment that a given
image was captured. The calibrated transform between the
device reference frame and the camera (see Section VI-A.1
for details) is then applied to these interpolated poses to yield
the pose of the camera when each image was captured.

IV. SELECTING VISIBLE POINTS

As we have already noted, the camera can only observe a
subset of the point cloud from a particular position. In this
section we outline our approach to identifying the visible
points. We start by describing the algorithm proposed by
Katz et al. [8], [9].

The camera is assumed to be positioned at the origin of
the coordinate system. Each 3D point qi in the point cloud
Q= [q1, . . . ,qN ] is then mapped to a new 3D point pi =F(qi)
using the generalised hidden point removal operator

F(q) =

{
q f (‖q‖)
‖q‖ q 6= 0

0 q = 0
(1)
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Fig. 3: Examples of (a) the cross-correlation output, (b) poor time synchronisation, (c) successful time synchronisation. The
red and blue signals represent the yaw-rates of the camera and lidar, respectively.

where the function f : R++ → R++ is a monotonically
decreasing kernel function.

When applying the hidden point removal operator to a
point cloud we see that the kernel function f performs a
spherical reflection i.e. if ‖qi‖ < ‖q j‖ then ‖pi‖ > ‖p j‖.
The key insight in the seminal work of [8], [9] is that the
visible points in point cloud Q can be found by finding the
points that map to points which lie on the convex hull of the
transformed point cloud (including the camera as a point in
the point cloud as well).

A. Choice of kernel function

The original paper [8] proposed a linear kernel function
flinear(d;γ) = γ−d. With the introduction of the generalised
hidden point removal operator [9], the choice of kernel
function expanded to include the exponential inversion kernel
fexponential(d;γ) = dγ with γ < 0. A key contribution of our
paper is to show that these kernels differ with respect to how
point visibility changes as a function of an object’s scale i.e.
how does the choice of kernel impact visibility when a point
cloud Q is scaled by d > 0? This question is answered in the
following two theorems.

Theorem 1: The point visibility algorithm by Katz et al.
[8], [9] is scale invariant when using the exponential kernel
fexponential(d;γ).

Proof: Let Q = [q1, . . . ,qN ] be the point cloud
in which to compute visibility. Let V (C) be the points
that lie on the convex hull of the point cloud C. Let
P(Q;γ) = [F(q1;γ), . . . ,F(qN ;γ)] be the transformation
of the point cloud Q using the generalised hidden point
removal operator with exponential kernel fexponential(d;γ).
The function V (C) is scale invariant, i.e. V (dC) = dV (C),
by virtue of the convex hull operator. Since visibil-
ity is determined using V (P(dQ;γ)) we need to show
that V (P(dQ;γ)) = g(d)V (P(Q;γ)) or more specifically
P(dQ;γ) = g(d)P(Q;γ) or F(dq;γ) = g(d)F(q;γ). An
expansion of F(dq;γ) reveals F(dq;γ) = dγ F(q;γ).

Theorem 2: The output of the point visibility algorithm
by Katz et al. [8], [9] varies according to the scale of the
input point cloud when using the linear kernel flinear(d;γ).

Fig. 4: A point cloud dQ = d[q1,q2,q3] and its spherical
reflection P(dQ;γ) = [p1(d), p2(d), p3(d)].

.

Proof: The proof of this theorem is quite involved and
is postponed to Appendix B.
The fact that the computation of visibility using the linear
kernel is affected by an object’s scale is clearly an un-
desirable property. We now illustrate where this property
manifests itself in practice. In Figure 4 we see a point cloud
of a concave structure dQ = d[q1,q2,q3] where the point dq1
belongs to a foreground object and the points dq2 and dq3
represent a background object. We assume that for d = 1,
the points Q are classified as visible. The proof for Theo-
rem 2 shows that the angles β1(d) and γ2(d) formed in the
transformed point cloud P(dQ;γ) = [p1(d), p2(d), p3(d)] are
monotonically increasing functions of d when ‖q1‖< ‖q2‖<
‖q3‖. Therefore, there exists a d such that β1(d)+γ2(d)> π ,
causing the point p3(d) to no longer lie on the convex hull
and thus the point dq3 is classified as invisible.

A synthetic example illustrating this property is shown
in Figure 5. An extremely dense point cloud is created by
first placing a red 3D box in front of a white planar wall.
This structure is then duplicated (blue coloured box), scaled
by d > 1 and then translated such that when the combined
structures (Figure 5a) are imaged with perfect visibility
analysis, a symmetric image is produced. Figure 5b shows
the resulting projections of the combined structure using the
linear (top) and exponential inversion (bottom) kernels for
determining visibility. The black pixels in the projections
correspond to empty space. As predicted, the increase in
scale has adversely impacted the visibility analysis when
using the linear kernel. The change in scale has had no effect
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Fig. 5: A synthetic scene (a) is used to assess scale invariant
properties of two kernels proposed in [9]. Figure (b) shows
the projection of the visible points in (a) computed using the
linear (top) and exponential inversion (bottom) kernels.

when using the exponential kernel.
The scale invariant property and the associated analysis of

concave structures makes the exponential kernel attractive for
determining point visibility within point clouds containing
vast numbers of objects as is the case when using mobile
mapping devices.

B. Computational Considerations

The device trajectory computed by the camera-less 3D
mapping device contains the pose of the device as a function
of time. Every change in pose requires computing the visi-
ble points using an O(N logN) operation [8]. Point clouds
created using lidar based mapping devices contain many
millions of points, making it prohibitively slow to perform an
O(N logN) operation for every pose in the device trajectory.
To alleviate this problem we employ two relaxations.

The first relaxation involves selecting points which are
within a hemisphere of radius Rm of the camera position.
This operation can be performed efficiently by discretising
the point cloud into voxels with side length V and computing
an exemplar for each voxel. Points are selected from the point
cloud if their associated exemplar lies inside the hemisphere.

The second relaxation requires introducing the assumption
that nearby points have the same visibility. This is reasonable
provided that the distance to nearby points is not too large.
Visibility can therefore be computed by discretising the
point cloud as before, determining the visibility of each
voxel exemplar and then propagating the result to the points
represented by the exemplar.

An important property of both relaxations is that the
computational complexity of each step is now upper bounded
by the number of voxels. In our experiments we compute the
exemplar point by finding the corner of the voxel which is
closest to the 3D point at negative infinity (i.e. −[∞,∞,∞])
which can be computed efficiently using the floor operator.

V. POINT COLOURING

It is now possible to extract a set of candidate colours
for each 3D point in the point cloud using the extrinsic
calibration between the camera and the device, the device
trajectory t and the visibility analysis. This section describes
how we reduce the set of colour candidates to a single colour.

The number of points in a point cloud is typically very
large, making it intractable to store every candidate colour for
every 3D point in memory. To render the problem tractable,
we use a sequential method that is robust to outliers. We
assume that the point cloud quality from SLAM is of the
same order as current market products such as GeoSLAM,
Kaarta and Google Cartographer, which typically have few
centimeters of positional noise. Colourisation errors due to
small inaccuracies in map, camera pose and timing are
reduced by using a form of robust average that can be
calculated sequentially. We do this by estimating the mean
and covariance of a weighted Gaussian distribution over the
set of colours. The final colour assigned to the 3D point is
the mean (µ) of this estimated distribution.

Consider the problem of estimating the mean and covari-
ance of a weighted Gaussian distribution using the following
log likelihood function

argmax
µ,Σ

N

∑
i=1

wi logN (xi; µ,Σ) (2)

where N is the multivariate Gaussian density function, xi
is a candidate colour and wi ≥ 0 is a weight assigned to the
colour xi. The solution for µ and Σ is

µ =
wNxN +∑

N−1
i=1 wixi

wN +∑
N−1
i=1 wi

Σ =
wNSN +∑

N−1
i=1 wiSi

wN +∑
N−1
i=1 wi

(3)

where Si = (xi − µ)(xi − µ)T . We see from (3) that the
contributions of the previous N − 1 colour candidates can
be represented using three quantities: ŵ = ∑

N−1
i=1 wi, µ̂ =

∑
N−1
i=1 wixi and Σ̂ = ∑

N−1
i=1 wiSi. Thus, each point in the point

cloud requires three state variables during processing. Criti-
cally, the video recorded by the camera can now be processed
sequentially. For this paper, the weights wi are computed
using an unweighted Gaussian distribution

N

(
x;

∑
N−1
i=1 xi

N−1
,

∑
N−1
i=1 Si

N−1

)
(4)

This choice of weighting function provides a balance be-
tween robustness to outlier colours and consistency with
respect to the order in which observations arrive. This
function requires an additional two state variables per point.
The memory required for the state variables is much less
than the memory required to store all colour candidates.

In addition to this rolling robust average method, we
also proportionally weight each colour candidate according
to the 3D point’s distance to the camera. This weighting
reflects the reduction in certainty of the pixel location with
increasing camera distance when there is angular uncertainty.
It also exploits the fact that SLAM systems normally have
higher local accuracy spatially, and most inaccuracy is at the
large scale due to accumulated drift. Preferencing the closer
observations aids in both cases.

VI. EXPERIMENTS

In all experiments we used existing camera-less lidar
scanning devices and added our cameras to them. This
section provides implementation details and results.



A. Practical Considerations

The system runs on a Mid 2014 MacBook Pro with Intel
Core i7 CPU @ 2.20GHz with four cores and 16GB of
memory. We used two types of consumer cameras in our
tests: a GoPro 4 Session and a Ricoh Theta S 360◦ camera.
Both cameras record video at 29.97 frames per second. Three
types of platforms were used for testing: a hand-held device
(Figure 1b) built in-house by our team, an unmanned aerial
vehicle DJI Matrice 600 (Figure 1d), and an electric all-
terrain John Deere TE Gator autonomous ground vehicle
(Figure 1e). One of the goals of the multiple platforms is to
illustrate the easy applicability and portability of the system,
as shown in the very different setups in the pictures. To
generate t and the 3D point cloud to be colourised, we use
the SLAM implementation described in [1] and [2].

1) Extrinsic Calibration: The objective of the calibration
step is to determine the extrinsic transformation between the
lidar’s base reference frame and the camera. To this end,
we have implemented a visual tool that allows the user to
manually adjust the view of the point cloud over the camera
image. To calibrate the extrinsics, the user tunes every com-
ponent of the transformation (translation, rotation and scale)
until the required degree of accuracy is obtained. The quality
of the calibration is evaluated by performing a perspective
projection of 3D points visible by the camera to the image
plane and observing the quality of the alignment between
features that are distinctive enough in both modalities.

2) Key Parameters: As discussed throughout the paper,
several parameters affect the quality and processing time
of the system. In our experiments, we present results with
different parameter configurations, summarised in Table I.

B. Results and Discussion

1) Hand-held: The hand-held device is equipped with
a Hokuyo UTM-30LX, which has a 30 meter range. We
ran tests in multiple areas such as indoor offices, corridors
and industrial environments, recording the data at walking
speed. A snapshot of the colourised point cloud of our office
environment and the corresponding camera view is shown in
Figures 6a and 6b, respectively. In this type of environment,
the visibility check (Section IV) brought significant visual
improvements due to the more cluttered nature of the space.

2) Ground Vehicle: The ground vehicle was driven at
approximately 2m/s, in an industrial park (Figure 6c). As
illustrated in Figure 1e, there is a significant translation from
the lidar to the camera, necessitating the use of visibility
analysis. The resulting point cloud is adequately colourised
despite significant vibration of the lidar mounting post. This
platform used the Velodyne VLP-16 lidar, which has a 100m
range. In this case, we used only 4 of the 16 beams available,
which lead to faster than real-time processing.

3) Aerial Vehicle: The aerial platform also employs the
Velodyne VLP-16 lidar. The camera mounting is once again
different, and given the size and limited payload capacity of
the quad-copter, the addition of a small camera without the
need for extra cabling or processing is convenient. Figures 6e
and 6f show the results.

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Resultant colourised point clouds for (a,b) a hand-held
system, (c,d) a ground vehicle, and (e,f) an aerial vehicle.
The left column shows a view of the coloured point clouds
and the right column shows captured camera frames.

Fig. 7: Example illustrating the misregistration in areas of
sharp 3D discontinuity and colour variation, such as the
brown roof line against the blue sky (detail shown in the
right image, corresponding to the green box on the left).

In addition to the results presented in this section, point
clouds are available online1. We have also created a summary
video2.

4) Discussion: The quality of the coloured point clouds
produced by our method is adversely impacted by errors
in the device trajectory computed by the SLAM algorithm,

1https://doi.org/10.4225/08/5afb6a9e8a9f1 - The point clouds are in .ply
format and can be visualised using free software (e.g., Meshlab).

2https://youtu.be/7LeQUtlYtHU



TABLE I: System parameters. The ‘Values’ column shows typical values, depending on the point density and speed required.

Parameter Name Description Values Comments
Point Skip (Ps) Amount of decimation in the original point cloud 1, 5, 9 ... Affects the processing time with n2

Frame Skip (Fs) Extract colour candidates using every Fs-th frame 1, 5, 9 ... Affects the processing time linearly

Maximum Range (Rm) The radius of the hemisphere used for
visibility determination >6m See Section IV.

Voxel side length (V ) Voxel side length for visibility determination 0.05m See Section IV

Kernel Type Choice of kernel function to perform radial
inversion during the visiblity check

Linear
Exponential Scale invariability (see Section IV)

γ
Visibility kernel parameter that determines the size
of the region detected as visible

γlinear < max
pi∈P

(‖pi‖)
γexp < 0

See Section IV

TABLE II: Camera yaw-rate and colour estimation processing times for the datasets shown in Figure 6. For all cases, the
‘Kernel Type’ was the exponential inversion kernel with γ =−0.001.

Dataset Acquisition Input Points [Fs, Rm] Yaw-rate Colourisation
Hand-held 4:26 4,212,425 [ 30, 7 ] 2:37 3:18
Ground 2:03 21,351,584 [ 30, 35 ] 0:39 11:59
Aerial 5:26 3,536,796 [ 30, 60 ] 4:31 11:51

TABLE III: Average root mean square error (RMSE) be-
tween the estimated point colours and associated candidate
colours for different datasets and algorithm configurations.

Device Exp Kernel (γ) Avg RMSE Pts Coloured %
Hand-held -0.0001 38.58 82.05
Hand-held -0.001 33.75 63.24
Hand-held -0.01 27.37 29.39

Ground -0.0001 34.90 75.35
Ground -0.001 30.83 34.53
Ground -0.01 24.50 11.19
Aerial -0.0001 33.89 96.06
Aerial -0.001 35.44 59.67
Aerial -0.01 36.82 15.06

camera distortion parameters, camera intrinsics, device to
camera extrinsics, camera and lidar synchronisation, visible
point classification, and the robustness of the algorithm used
to select a colour from a set of candidate colours. In this
section we discuss the last three sources of error. Our exper-
iments did show a misalignment between the video frame
and projected point cloud data in areas with high frequency
motion in conjunction with a sharp depth discontinuity. It
is difficult to determine if the misalignments were due to
synchronisation issues or the sub-optimal procedure used for
estimating extrinsics. A visual inspection of the cross corre-
lation of the camera yaw-rate signals with their respective
device yaw-rate signals showed very high peaks, indicating
successful synchronisation. The effect of the misalignment
can be seen in Figure 7 where a brown roof line has been
coloured with pixels belonging to blue sky. Another source
of errors are glass and reflective surfaces. This is inherent
to the lidar itself (and not directly due to the colourisation
algorithm), but it does affect the colourisation quality.

Table III shows how the gamma parameter of the exponen-
tial inversion kernel affects the number of points coloured
and the robustness of the point colouring algorithm. The
percentage of points which were classified as being visible
in one or more video frames is shown in the “Pts Coloured”
column. The average root mean square error between the
point colour and the candidate colours is found in the “Avg

RMSE” column. As predicted, more points are classified as
visible as the γ parameter approaches zero. Results also show
that the average RMSE error increases as the percentage of
points coloured increases in all datasets except the aerial
vehicle dataset.

The processing time required to process each dataset is
shown in Table II. The duration of the captured video, the
number of points to be coloured and the parameters used to
colour each dataset is included in the table. The “Yaw-rate”
column contains the amount of time required to compute
the yaw-rate from the captured video. The “Colourisation”
column contains the amount of time required to perform
visibility analysis over the entire sequence and compute the
final colour of each point. We see that the bulk of the
processing time is spent in the colourisation phase.

VII. CONCLUSION

We have presented an approach to colourising a point
cloud acquired with a mobile scanning platform that does
not require tight coupling of a mapping device and camera
either spatially or temporally. To this end, we introduced
a novel method of synchronising the mapping device data
and camera data using optical flow information. The newly-
proposed colourisation pipeline integrates the state-of-the-
art point cloud visibility analysis algorithm, for which we
have motivated the specific choice of kernel theoretically and
empirically. The colour accumulation and assignment scheme
employed by our pipeline is both memory-efficient and
robust to outliers resulting from variations in lighting con-
ditions or local misalignment between the mapping device
and camera. Finally, we have demonstrated the flexibility
of our colourisation pipeline by applying it to data recorded
using variety of different scanning platforms, be it hand-held,
autonomous ground vehicle, or aerial vehicle. Future work
includes adding closed-loop adjustment of the alignment
between the lidar and camera data. This would mitigate the
problem of colours ‘bleeding’ onto adjacent 3D structures
and would further improve the quality of colourisation.



APPENDIX

A. Linear Kernel and Monotonic Angle Functions

Lemma 1: The angle γ1(d) in Figure 4 is monotonically
decreasing if the transformed points [p1(d), p3(d)] are calcu-
lated using the linear kernel pi(d) = (λ‖qi‖−1 − d)qi with
‖q3‖ > ‖q1‖ and λ‖qi‖−1 − d > 0.

Proof: We remark that the angle α1 = π−β1(d)−γ1(d)
is constant for all d. Using the law of sines we have

f (d) =
‖p1(d)‖
‖p3(d)‖

=
sin(π−α1− γ1(d))

sin(γ1(d))
. (5)

The derivative of (5) is f ′(d) = −sin(α1)csc2(γ1(d))γ ′1(d)
γ1(d) is monotonically decreasing if f ′(d) > 0 for all d.
Substituting pi(d) in to Equation 5 gives

f (d) =
λ −d‖q1‖
λ −d‖q3‖

. (6)

An analysis of the inequality f ′(d) > 0 where f ′(d) is the
derivative of Equation 6 results in ‖q3‖ > ‖q1‖ which is
true by definition.

As consequence of this result, β1(d) is monotonically
increasing since π = α1 + γ1(d) + β1(d). This approach
proves γ1(d) increases monotonically when ‖q3‖< ‖q1‖.

B. Linear Kernel Scale Dependent Visibility Proof

This section documents the proof for Theorem 2 i.e.
the algorithm proposed by Katz et al. [8], [9] for com-
puting visibility of points in a point cloud about a posi-
tion C is not scale invariant when using the linear kernel.
Proof: Figure 4 shows a point cloud {dq1,dq2,dq3} with
‖q1‖ < ‖q2‖ < ‖q3‖ where all points are classified
as visible when d = 1. By definition, the reflected points
pi(d) = (λ‖qi‖−1 − d)qi therefore lie on the convex-
hull when d = 1 and the angles β1(1) and γ2(1) satisfy
β1(1)+γ2(1)≤ π . According to Lemma A, the angles β1(d)
and γ2(d) are monotonically increasing functions of d since
‖q1‖ < ‖q3‖ and ‖q2‖ < ‖q3‖ respectively. It is therefore
possible to select a scaling of the structure d and parameter
λ such that β1(d) + γ2(d) > π and λ‖qi‖−1 > d, rendering
the point dq3 invisible.
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