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Abstract—The use of cameras as a sensor for odometry estima-
tion is an active research topic that has seen significant growth
in recent years. Most methods, however, are only suitable for
standard cameras that rely on reasonable lighting. An alternative
to overcome low light conditions is the use of thermal or long-
wave infrared imaging. Although visible spectrum and thermal
imaging share many characteristics, it is not straightforward to
apply standard visual odometry algorithms to thermal imaging
data. In this paper we propose a practical visual odometry system
based on a monocular thermal camera. As monocular odometry
suffers from an unknown scale factor, the system performs
efficient ground plane detection for targeted feature extraction,
such that the scale factor can be reliably estimated if the camera
height and pitch are known. We also address the problem of
periodic non-uniformity correction, a necessary characteristic of
thermal cameras which freezes the output potentially for over a
second and can severely affect motion estimation. In this sense,
we automatically determine appropriate times to perform non-
uniformity correction based on the current and predicted camera
rotations. Experiments illustrate the applicability of the system
and compare it with other state estimation approaches.

Index Terms—Visual odometry, autonomous vehicles, thermal
imaging, long-wave infrared.

I. INTRODUCTION

Visual odometry is a well known functionality of computer

vision systems, in which the egomotion of a camera mounted

on a vehicle or robot is estimated. The estimation process

considers that only the visual input from one or more cameras

is used. With the term initially proposed by Nistr et al. [1], vi-

sual odometry finds application in intelligent vehicles, robotics

and augmented reality, among others. In vehicles in particular,

it can provide important prior information in Simultaneous

Localization And Mapping (SLAM) or obstacle detection,

serving as an alternative or supplement to wheel odometry,

Global Positioning System (GPS) or Inertial Measurement

Units (IMUs), for example. Compared to those localization

modalities, visual odometry offers different advantages. In

relation to wheel speed sensors, visual odometry can present

higher accuracy, particularly in slippery terrain [2]. Regarding

GPS and IMU-based systems, they are generally low accuracy

or present very high sensor costs. GPS-denied environments

are arguably one of the most significant examples in which

visual odometry has great relevance, such as in underwater

or underground navigation. Visual odometry is made possible

through the analysis of changes in position of particular points

in the image from frame to frame, generally induced by

the camera motion. As with many computer vision tasks,

sufficient illumination and enough texture (such that features
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can be extracted) are necessary for motion estimation to work

satisfactorily. In practice, however, challenging or low light

conditions are often part of real application scenarios.

Tackling this problem, in this paper we consider the “visual”

odometry task using a thermal camera. The term “visual” is

quoted as in theory the information used lies in the non-visible

(i.e. thermal) spectrum, although it can be represented in a

visible format for human interpretation, and can be subject to

image processing in a similar way to conventional imagery.

Far infrared imaging has been previously combined with

other sensors for ego-motion estimation [3], [4]. These

works indicate that statistics obtained from long-wave infrared

(LWIR) images can be fused with other sensors to satisfacto-

rily improve the results achievable using visible cameras. In

this paper we do not address the information fusion problem,

but focus on practical and theoretical challenges that arise

when using thermal imaging only. The proposed solutions

move towards the limits of this sensing modality for visual

odometry, applied to vehicle egomotion estimation in outdoors

scenarios.

The contributions presented are motivated by the fact that

night-time operations of autonomous vehicles find applications

in many fields. Aside from the generic goal of dependable

autonomous navigation, in industry and agriculture, for exam-

ple, some systems must operate 24 hours a day, motivating

the use of thermal cameras as a sensor for localization.

Other modalities such as Short-Wave Infrared (SWIR) also

offer complementary statistical properties to visual images.

However, LWIR was preferred for the experiments because

it represents a more distinct imaging modality. While regular

visible-spectrum images capture radiation (light) reflected off

an object, thermal infrared images primarily capture radiation

emitted from objects, even at room temperature, and are

therefore independent of the effects of lighting.

A. Contributions of this Work

Although thermal and visible spectrum images share sev-

eral statistical characteristics, some fundamental aspects make

direct application of standard visual odometry algorithms to

thermal imaging data hard or unfeasible. A significant problem

in thermal images is a generally reduced number of features,

in particular on road surfaces, due to a lower signal-noise

ratio than visible images under daylight conditions. This is

a relevant issue, as a reliable estimation of road feature

points is essential (when other types of speed estimation

are not available) to estimate the scale factor in monocular

odometry [5]. For this reason, the proposed system performs

efficient ground plane detection for targeted feature extraction.

This is achieved by performing intelligent segmentation of the

ground, combining information from motion and appearance
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to segment the road. If the road is satisfactorily segmented, the

feature point detection sensitivity can be increased for points

lying on the road. Hence, reliable road (ground) points in the

odometry computation allow for better scale estimation.

Another inherent aspect of many thermal cameras is the

Non-Uniformity Correction (NUC) [6], whose aim is to elimi-

nate fixed pattern noise that accumulates with time in thermal

digital imaging sensors. The NUC freezes the camera for a

small amount of time (typically between 0.3 and 2 seconds)

and can severely affect motion estimation. We mitigate this

problem by determining suitable times for NUCs based on

the current and predicted camera rotations. We show that this

proposed ‘NUC Trigger Manager’ reduces the negative impact

of NUCs on visual odometry, improving position estimation.

The experiments performed compare the performance of the

standard algorithm to the proposed method. For the tests, the

thermal camera was mounted on a ground vehicle and driven in

structured and unstructured environments. The results indicate

key points of failure of the standard algorithm and illustrate

improved visual odometry using the system described.

It is important to note that one of the goals of this contri-

bution is to propose strategies that require little adaptation

of standard visual odometry algorithms (enabling them to

work successfully with thermal-infrared images), rather than

proposing a fundamentally different visual odometry approach.

As far as our literature review could tell, there are no other

visual odometry methods that have been adapted to or designed

explicitly for the thermal-infrared modality.

This paper is organized as follows. In Section II we re-

view background concepts that are relevant for the proposed

method. In Section III we describe the proposed method and

the NUC Trigger Manager. In Section IV we present the

method for enhanced road estimation, followed by experiments

in Section V. We finish the paper with relevant conclusions in

Section VI.

II. BACKGROUND

In this section we review background concepts related to

monocular visual odometry as well as to thermal imaging. A

description of these concepts allows for better understanding

of the contributions presented in this paper.

A. Monocular Visual Odometry

When performed with a single camera, motion estimation

suffers from scale ambiguity. To overcome this limitation

without integrating IMUs or GPS into the system [7], [8], a

common strategy is to make assumptions about the camera

mounting and the environment, such as the road [5], [9]

and the structure of surrounding buildings [10]. For ground

vehicles, assuming a locally planar road model in the vicinity

of the vehicle is reasonable, as illustrated in Figure 3. Although

roads usually present some degree of curvature, a linear

model is a commonly used approximation [5], [11] that is

very effective in structured environments. In this case, if the

intrinsic camera calibration parameters K are known and fixed,

as well as the height and pitch of the camera, scale can be

retrieved [5]. Given a sequence of input images, the odometer

must estimate the pose of the camera at each frame using

only image information. To achieve this, salient points xk
j are

tracked over a number of frames. These salient points can

be corners or blobs [12], for example. In the salient points

notation, j corresponds to the index of the feature and k

indicates the frame index. Tracking these points from frame to

frame, it is possible to estimate the rotation matrix R and the

translation vector t between the current and previous frames.

Therefore, the rigid body transformation relating the poses at

instants k and k − 1 is given by

Tk,k−1 =

[

Rk,k−1 tk,k−1

0 1

]

(1)

Transformations can be integrated over each frame for the

full trajectory, so that the poses of the moving camera with

respect to a predefined world reference frame are determined.

B. Infrared Visual Odometry

Video-based localization using only thermal-infrared video

has been found to be highly challenging (particularly in

3D), but possible in highly constrained environments [13].

For applications such as loop closure detection, the thermal-

infrared modality has been demonstrated to be complimentary

in nature to the visible spectrum [14]. In principle, thermal

images could be used directly as input for the framework

described in Section II-A using standard methods that work

in the visible domain. However, two important aspects make

the application of standard algorithms in thermal-infrared

challenging: (i) more difficult salient point selection and (ii)

the occurrence of NUCs. These problems, and their proposed

solutions, are detailed in the following two sections.

1) Ground Point Detection for Scale Estimation: In the vis-

ible domain, image statistics are generally richer, particularly

in terms of texture and high frequency spatial information,

enabling better detection and tracking of salient points. This is

especially important in the case of monocular visual odometry

methods which rely on ground points being tracked. The

importance of detecting features on the ground plane is that,

with a known camera height and angle, it is possible to retrieve

an approximate scale information from a monocular camera.

A low number of detected points on the road severely reduces

the algorithm’s performance. In the case of thermal images,

unfortunately, roads generally present low contrast and the

number of features able to be tracked reliably is very low,

limiting the effectiveness of the road estimation procedure.

For monocular visual odometry, reliable tracking of enough

ground points is essential for scale estimation. To mitigate

this problem, in Section IV we perform an intelligent salient

point selection, increasing the detectability of points that lie

on the ground. In this scenario, we employ a road detection

algorithm applied to thermal images that indicates potential

road regions.

2) Non-Uniformity Correction: The raw digital output of

thermal-infrared cameras is greatly affected by the presence

of spatial non-uniformities, producing a phenomenon known

as Fixed-Pattern Noise [15]. If this noise is allowed to ac-

cumulate, it can substantially reduce the reliability of feature
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Fig. 1: Effect of the accumulation of 5 minutes of non-

uniformity noise (image on the right) on the quality of thermal-

infrared video. Note that non-uniformity noise is always

present in thermal-infrared images. However, the right image

contains much more of this noise, as it was captured much

longer after the most recent NUC had been performed. The

left image, in contrast, was captured only a few seconds after

the NUC.

extraction and tracking algorithms [16]. Figure 1 shows the

effect of non-uniformity noise.

As a result, many thermal cameras have a built-in me-

chanical shutter that is used to re-calibrate the sensor during

operation and reset the sensor noise [17], performing an

operation known as a Non-Uniformity Correction, or NUC.

This procedure results in a delay of approximately 1 second

during which no new data can be obtained. Such a disruption

can be fatal for conventional feature-tracking methods which

assume a smooth motion of features from frame to frame.

Most thermal cameras perform NUCs periodically, but the

NUC frequency depends on the sensor quality and application.

Typical values range between 1 and 3 NUCs per minute.

During the NUC, the input stream is frozen for a period

of time. Although short, this image freezing is sufficient to

damage severely the quality of pose estimation (in particular

because odometry errors accumulate over time), depending on

the current camera state. In the following section we describe a

NUC management approach that reduces the impact of NUCs

on motion estimation.

III. NUC MANAGEMENT

Given the challenges discussed in Section II, in this section

we present practical solutions that improve camera motion

estimation significantly in the thermal domain. In particular,

we introduce a module called ‘NUC Manager’ that triggers

the NUC at suitable times.

For a camera viewing relatively large areas (like in our

application scenario, where the camera is mounted on an

outdoor ground vehicle), the error due to NUC freezing is

most prominent when the camera is undergoing significant

rotation. This is because feature displacement in the 2D

image is significantly greater during rotation than regular

forward-motion. Therefore, an efficient way to perform NUC

management is to analyze the current camera rotation state. For

this purpose, we evaluate the rotation (in our framework we

represent rotations via quaternions with respect to an original

reference) to determine whether or not NUCs are appropriate

at a given time, with respect to the rotation variable. As the

NUC lasts for a significant amount of time, not only the

current rotation is relevant, but also the amount of rotation

predicted for the near future. This prediction can be done by

analyzing the structure of the environment, in particular of the

road direction on which the vehicle navigates. A third factor

that is also considered in deciding when to perform a NUC

is the elapsed time since the last NUC, as this indicates how

urgent it is. Finally, the temperature change experienced by the

camera since the last NUC is also important - with a greater

temperature change increasing the urgency.

Summarizing the considerations above, Figure 2 shows

all variables considered by the NUC Trigger Manager for

determining whether or not the NUC is allowed at a given

instant. In that figure, dr represents the angle of the current

rotation quaternion, given by 2 arccos(w), where w is the real

element of the quaternion. Equivalently, pr is the angle of

the predicted rotation quaternion. te and ∆t correspond to

the time elapsed and the temperature change since the last

NUC, respectively. The output TNUC ∈ 0, 1 is a flag indicating

whether the NUC should be triggered.

Let functions f(dr, pr, te), g(te), and h(∆t) be defined as

f(dr, pr, te) = α1te + α2dr + α3pr (2)

and

g(te) =

{

0, if te < tmax

1, if te ≥ tmax

(3)

and

h(∆t) =

{

0, if ∆t < ∆tmax

1, if ∆t ≥ ∆tmax

(4)

where α1, α2 and α3 are normalization parameters. tmax

is the maximum allowed time without NUC and ∆tmax
is

the maximum temperature change allowed since the previous

NUC. The NUC Trigger Manager rule is defined as

TNUC =

{

0, if f(dr, pr, te) + g(te) + h(∆t) < 1

1, if f(dr, pr, te) + g(te) + h(∆t) ≥ 1
(5)

The output of this equation is evaluated on a frame by frame

basis, preventing or allowing NUC. Respecting the output from

(5), NUC can be executed at any time except when the camera

has not yet completed the previously triggered NUC.

dr is obtained directly from the current output of the

visual odometry algorithm (before integration with previous

measurements for trajectory generation). pr depends on the

geometry of the road, since future rotations depend on upcom-

ing road curvature. Therefore, Section IV discusses a method

for estimating the road surface and direction to generate pr.

The results in Section V illustrate the benefits of using the

NUC manager, comparing the position estimation performance

with and without this functionality.

IV. ROAD ESTIMATION

The road estimation has two goals in this work: (i) to

generate pr used in the NUC manager and (ii) to highlight

the ground as an area of interest for feature point extraction

in visual odometry. A number of works have been proposed
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NUC

Trigger

Manager

dr

pr

te

∆t

TNUC

Fig. 2: Block diagram illustrating the inputs and output of the

NUC Trigger Manager. dr represents the normalized derivative

of the current rotation quaternion and pr is the predicted

rotation. te and ∆t corresponds to the time elapsed and the

temperature change since the last NUC, respectively. The

output TNUC ∈ 0, 1 is a flag indicating whether the NUC

should be triggered.

Fig. 3: Example thermal-infrared images of roads in industrial

environments, where traditional road detection methods often

perform poorly. The images on the left illustrate feature

detection without the sensitivity parameter adapted for the

road, where as the images on the right show additional points

detected due to increased sensitivity.

for road surface estimation, based on various features such

as color, texture and shape of the road [18], [19], [20].

Most methods, however, focus on roads with either well-

defined geometry or with data from visible-spectrum cameras.

Many industrial application scenarios, for example, require

road detection on non-urban traffic roads without specific

lane markings and curbs, aside from the data being from

thermal cameras (see the examples in Figure 3). In this context,

an alternative is to combine motion and appearance for the

generic segmentation of objects in the scene [21]. Based on

semantics (e.g. the expected position of a road in front of a

vehicle), the road surface and direction can be determined.

The main pipeline for the road segmentation method is

shown in Figure 4. The key aspect is the use optical flow vec-

tors as supplementary information in image segmentation. In

this paper, we employ a gradient-based watershed method [22]

for segmentation. Therefore, we extend the common watershed

implementation to include not only brightness information,

Fig. 4: Block diagram illustrating the basic pipeline of the

proposed road detection method. The segmentation stage con-

siders a multi-channel input, consisting of the raw input image

and the dense optical flow representation in the corresponding

frame. It also considers seed locations provided by clustering

of the optical flow vectors.

but also topological optical flow information, obtained from

the difference between two consecutive frames. Optical flow

data is applied in two ways: (i) by merging (via weighted

sum) the optical flow “image” F and the original image V

into another image S, which is then segmented, and (ii) by

clustering optical flow vectors and using the center of the

clusters as seeds (represented by the set Φ) in the segmentation

process. Figure 5(b) shows an example of the topological 3-D

structure of the flow representation corresponding to the visible

spectrum image in Figure 5(a). This figure illustrates that the

optical flow topology is applicable to a watershed segmenta-

tion, with well-defined “hills” and “valleys”, therefore being

less prone to over-segmentation, as addressed in Section IV-B.

A. Semi-Dense Optical Flow

In our implementation, we use semi-dense optical flow (i.e.

optical flow in a sub-sampled version of the original image) as

it provides a satisfactory indication of the flow over the whole

frame, which is not the case when relying only on feature

points. Among dense optical flow techniques, one family of

methods that has gained popularity (and we use in this paper)

are three dimensional (3D) structure tensor methods [23],

[24], mainly due to their low systematic error and robustness

to noise. In order to work adequately, 3D structure tensor

methods assume that the brightness change constraint is valid,

such that a given feature will have constant brightness between

two consecutive frames, and that it will only be translated.

In order to regularize the results, it builds the tensor for each

pixel element within its surrounding pixels, where local optical

flow is considered invariant. The optical flow estimation is

then converted to an eigenvalue analysis problem. Because

the locally constant optical flow assumption is often not met

in real applications, the 3D structure tensor technique can be

extended to use the affine motion model. In this situation the

tensor is determined by projecting the image into a second

degree polynomial and integrating the affine model into the

tensor, where the affine parameters are solved using linear

systems [24].

B. Joint Segmentation

The joint segmentation merges the input image and its corre-

sponding optical flow image into a single matrix, as indicated
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(a) Thermal-infrared image flow. (b) 3D representation of flow magni-
tude, illustrating well defined “hills”
and “valleys”.

Fig. 5: Illustration of a thermal image and its flow represen-

tation.

by the block ▽ operation shown in Figure 4. Let V be the input

image and F represent the flow image corresponding to V. The

two images are combined based on a weighted sum given in

(6), which depends on a confidence level α of each flow vector.

This confidence measure estimates the correctness of each

displacement vector such that vectors with a lower α have less

influence in the segmentation. α is determined following an

intuitive technique based on linear subspace projections [25],

obtaining “eigenflows” from the original optical flow signal.

In summary, the confidence measure is determined based

on the assumption that if displacement vectors can be well

reconstructed, they are more reliable in their surrounding

neighborhood. Hence, the reconstruction error of the flow

vector is used to quantify the confidence measure.

The final segmentation using watershed is performed on

“image” S, whose i-th element is described as

si =
vi + αi|fi|

1 + αi

(6)

where αi is the confidence measure for the i-th optical flow

vector in F, and vi and fi are the i-th element of V and F,

respectively. The operator | · | represents the magnitude of the

flow vector.

C. Outlier Removal and Clustering

In addition to being included as a topological region in the

segmentation process, flow vectors can also be used as seeds

in the watersheds. Since the cameras are mounted on a vehicle,

it is reasonable to assume that the cameras move on a surface

plane and the great majority of correct optical flow lines follow

the same direction as their neighbors. Consequently, we can

remove outliers by simply eliminating optical flow vectors

whose directions differ more than a threshold τθ from the

average optical flow direction. This operation reduces the oc-

currence of false local minima in the watershed segmentation

that is caused by outliers.

In a scene, optical flow vectors are rarely induced from only

one object. Generally there are several objects inducing optical

flows in the image. Hence, it is possible to cluster optical flow

vectors according to their location and characteristics.

In a given frame, each induced optical flow vector is

described by its x position, y position, angle θ, and magnitude

A. Let Df represent the description of the optical flow vectors

within the given frame, f . For this frame, the optical flow

information is given as

Df =











x1 y1 θ1 A1

x2 y2 θ2 A2

...
...

...
...

xK yK θK AK











, (7)

where K is the number of flow vectors in the image. Optical

flow vectors are clustered according to their location, mag-

nitude and angle by employing a Gaussian Mixture Model

(GMM) in a 4 dimensional space. The mean of each cluster

is projected onto the 2-D image space, and it is employed

as a seed in the watershed segmentation algorithm. GMMs

are probabilistic models that represent the presence of sub-

populations within an overall population. Formally, a mixture

model describes the mixture distribution that represents the

probability distribution of observations in the overall popula-

tion, and GMMs are particularly effective in clustering within

normal distributions. Assuming that the distribution of the

magnitudes of induced optical flow vectors is normal [26],

GMMs can be employed to cluster the data according to their

source. The number of clusters is determined using a standard

methodology in which an expectation-maximization algorithm

estimates the finite mixture models corresponding to each

number of clusters considered and using Bayesian inference

criterion to select the number of mixture components, which

is then set as the number of clusters [27]. This methodology

commonly generates between 10 and 25 clusters in typical

outdoors thermal images.

D. Segmenting the road

Once the image is segmented, the immediate cluster in a

region R in front of the vehicle is set as the road cluster. If

multiple clusters are found in R, the largest cluster is selected.

As discussed, this cluster is used for (i) the calculation

of the road direction and (ii) to assist in the identification

of ground points in the plane estimation required by the

odometry module. The main road direction is estimated using

a triangular model [28] via least-squares linear fitting from

the points on the edges of the segmented area. Although a

triangular model is not highly precise, it suffices in providing

a general direction of the upcoming road section, which is

used as input as the variable pr in the NUC manager.

The visual odometry algorithm estimates the ground plane

to allow for the scale factor, which can be determined given

that the height and pitch of the camera are known. With the

knowledge of the areas that represent ground, the feature point

detection threshold τnms is reduced, therefore increasing the

number of points in that region. In particular, we change the

peakiness threshold in the non-maxima-suppression, allowing

for more feature points to be considered. Tuning of τnms

must consider the trade-off between an increased number

of points of interest and the robustness of these points. To

determine a suitable value, an evaluation is performed where

τnms is varied and the odometry estimation error is obtained.

As an example, Figure 3 shows feature points with different
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(a) Satellite view of the test area (drivable routes are highlighted
in green), illustrating the structured and unstructured routes. The
scale is 410× 360 meters.

(b) Map of the test area from 2D laser scans mounted on the
vehicle. The position from laser-based localization is used as
ground truth for evaluating odometry error.

Fig. 6: Illustration of the test area and corresponding 2-D map.

sensitivity parameter for road regions. The experimental

evaluation shown in Section V indicates that, for road regions

in thermal data, a reduction of approximately 75% in τnms

in comparison to visual spectrum data works satisfactorily.

Hence, in our implementation we use τnms = 50 for visual

spectrum data and τnms = 13 for thermal data.

Fig. 7: Correction of distortion using the mask-based approach.

V. EXPERIMENTS

In this section we run a number of experiments comparing

the proposed system with visual odometry using standard

cameras.

A. Practical Considerations

1) Hardware: For the experiments, a Thermoteknix Miricle

307K thermal-infrared camera and a Basler scA780 visible

spectrum camera were used. The cameras were mounted

on a John Deer “Gator” (Figure 8), an electric two-person

utility vehicle, and driven in structured and unstructured

environments in an industrial park in Australia. The area

contains both urban and rural characteristics, with roads, trees,

dense buildings and open fields. A satellite view of some

of the approximate routes traversed is shown in Figure 6.

The thermal-infrared camera consists of a long-wave uncooled

microbolometer detector sensitive in the 7−14µm range, with

spatial resolution of 640× 480. It is able to see objects in the

−20 to 150 ◦C temperature range, and it has a NEDT (Noise-

Equivalent Differential Temperature) of 85mK. Images were

geometrically calibrated to remove distortion and determine

the intrinsic parameters of the camera using a mask-based

approach [29]. The effect of this calibration is demonstrated

in Figure 7.

(a) Robotic vehicle. (b) Setup of the visible and thermal
cameras.

Fig. 8: Vehicle and cameras used in the experiments.

2) Software: In our implementation, for the thermal camera

data extraction and pre-processing we used the ROS (Robotics

Operating System) [30] package developed by Vidas et al [13],

which contains a FFMPEG4 based driver for streaming off the

thermal camera.1. For this paper, we modified this package

1This open-source ROS package is available online for download from
http://wiki.ros.org/thermalvis
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TABLE I: Divided by the forward slash ‘/’, the median positional errors (in meters) and heading errors (in degrees) are

presented in the table, for varying traveling distances (e.g. 10 m, 20 m, etc). The blank fields (-) correspond to the night tests

with the visual spectrum cameras, where no meaningful results are obtained. The expanded acronyms for each ‘Odometry

Setup’ are given in the beginning of Section V-B.

Day-time Night-time

Odometry Setup 10 m 20 m 50 m 100 m 10 m 20 m 50 m 100 m

VC 0.43 / 1.10 0.89 / 1.86 2.79 / 2.49 6.09 / 3.15 - / - - / - - / - - / -
VC + RE 0.30 / 1.05 0.60 / 1.91 2.60 / 2.40 5.30 / 3.10 - / - - / - - / - - / -

TC 1.02 / 12.00 3.95 / 20.23 12.40 / 25.31 21.05 / 42.75 1.08 / 13.87 4.01 / 18.46 12.61 / 18.14 21.43 / 41.03
TC + RE 0.74 / 10.29 2.98 / 18.70 10.51 / 21.49 18.78 / 32.45 0.80 / 15.33 2.89 / 11.76 10.33 / 17.04 19.80 / 32.50

TC + RE + NM 0.55 / 1.40 1.50 / 1.98 4.01 / 4.75 7.96 / 6.23 0.48 / 1.50 1.47 / 1.91 4.20 / 3.48 7.95 / 6.22
Wheel Odometry 0.49 / 1.70 1.67 / 3.23 6.44 / 7.39 15.47 / 12.45 0.50 / 1.70 1.64 / 3.22 6.32 / 7.44 15.10 / 12.11

adding the NUC management system (discussed in Section III)

as a module linking motion estimation with NUC triggering.

Data was logged using ROS and the resulting frame rate

was approximately 14 frames per second. For the odometry

computation, as discussed in Section II-A, we use a state-of-

the-art method for feature extraction, essential matrix com-

putation and motion integration, implemented in the package

Libviso2 [31]. In this algorithm, the only difference between

the implementations visual and thermal modalities is the

sensitivity parameters for applying optical flow in regions of

interest, as explained in Section IV-D.

3) Ground-truth: All types of odometry suffer from un-

bounded error and incremental drifts. In addition, a typical

characteristic is that the systematic error in odometry systems

grows with the distance from the starting point, but the error

is frequently reduced as the vehicle loops around and returns

towards the origin [32]. This indicates that driving in a loop

and computing the average Euclidean distance error to the

origin can be a weak measure for the performance of odometry

systems. A practical alternative is suggested by Johnson et

al. [33], where a short segment of the odometry path is initially

registered with the ground-truth path using a least squares

method. The Euclidean distance error of their odometry system

is then measured x meters down the path. The origin is slightly

shifted and the procedure is repeated until the origin is x

meters from the end of the driven path. Observing the median

and the variance of the errors obtained, a more meaningful

interpretation of the performance of the odometry module is

achieved. In large open scenarios like our test area, an adequate

value for x was determined empirically to be 100 meters.

For comparison purposes, the vehicle is equipped with four

2D lasers (one in each corner of the vehicle) which are used as

input for a localization algorithm that is used as ground-truth.

Figure 6(b) shows the map of the test area generated from

2D laser scans mounted on the vehicle. Although RTK-GPS

is often used for ground-truth, in the industrial environment

where the experiments are performed this type of localization

is not a suitable solution. There are several metal buildings and

sheds which cause severe multi-path and form a “semi-urban

canyon”, indicated by the central trajectory in Figure 6a.

B. Results

The results presented in the following compare the proposed

framework against the direct application of monocular visual

odometry to thermal imaging, with the goal of evaluating the

improvements suggested. The results are presented in 5 parts,

considering the following setups:

1) VC: Visual spectrum camera.

2) VC + RE: Visual spectrum camera with road estimation.

3) TC: Thermal camera (without NUC management or road

estimation).

4) TC + RE: Thermal camera with road estimation (without

NUC management).

5) TC + RE + NM: Thermal camera with road estimation

and NUC management.

All setups above are tested for both day time and night

time situations, where the benefit of using the thermal camera

is evident.

Figure 11 shows the trajectories for the cases mentioned

above for the day time trials. This figure illustrates that

although the visual spectrum camera still performs better at

day time, the proposed method improves significantly the

performance of the thermal visual odometry. The advantage,

of course, lies in the fact that the thermal camera can operate

in the dark or night time, where the visible camera does not

provide meaningful results. A key result is the fact that the

average position error is reduced by more than 70% between

simple thermal camera odometry and thermal camera odome-

try with road estimation and NUC management. Numerical

results are summarized in Table I, for different distances

(10, 20, 50 and 100 meters), as discussed in Section V-A3.

Correspondingly, Figure 9 shows the spreading of results

for the different runs, presenting both absolute position and

heading errors. The figure illustrates the high variance in the

case of thermal data without the NUC manager.

The trajectories for the night time tests present similar

characteristics to those in Figure 11, aside from the fact that

the visible camera fails as expected. Overall, results show

that the system proposed greatly improves the performance

of thermal camera odometry (compared to direct ‘out-of-the-

box’ use of VO algorithms with thermal data), as indicated

in Table I. It is important to observe that errors for thermal

imaging without the NUC compensation vary significantly

between different tests, depending on what part of the run (i.e.

during a curve or a straight segment) NUC was performed. The

results discussed above use τnms = 50 for visual spectrum data

and τnms = 13 for thermal data. This choice is based on the

experimental evaluation shown in Figure 10, which present

errors (in distance) for TC+RE for varying τnms, considering
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Fig. 9: Experimental errors for the different methods at differ-

ent travelling distances from the origin. The center dots repre-

sent the median of each method and the triangles correspond to

the maximum and minimum values obtained in the experiment.

The expanded acronyms for each different modality are given

in the beginning of Section V-B.
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Fig. 10: TC+RE odometry errors for different values of τnms.

In this evaluation, the errors were generated for 10 meters

segments (as opposed to also 20, 50, and 100 meters).

the 10 meter segments.

VI. CONCLUSIONS

This paper presented a new method for using thermal imag-

ing as an alternative to conventional imaging for monocular

visual odometry. The results show that the proposed method

can achieve similar results to those with a visible spectrum
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Fig. 11: 2-D illustration comparing different types of odom-

etry. The loop shown in this figure corresponds to the loop

shown in Figure 6. The expanded acronyms for the legends

are given in the beginning of Section V-B.

camera using traditional algorithms, with the significant ad-

vantage of being able to operate effectively at night time. The

method combines efficient NUC management with road lane

estimation in order to compensate for the inherent challenges

of thermal infrared data, namely the unavoidable occurrence

of data interruptions and the low signal-to-noise ratio. The

proposed method could be implemented as a standalone

odometry system, or potentially combined with conventional

visual odometry or other approaches to enhance accuracy.

One limitation of the proposed system is that it is tailored

to applications where the camera is mounted on a vehicle

or ground robot. In different scenarios (e.g. aerial vehicles

or handheld devices), the NUC manager would have to be

modified, although most of the underlying concepts (time since

and temperature change since last NUC, current rotation) are

still applicable.

Future work includes investigating different image pre-

processing methods for feature matching in the thermal do-

main. In general, to increase saliency in thermal images,

pre-processing methods can enhance substantially the image

quality and make it easier to extract features, enhance segmen-

tation, etc [34], [35]. However, in the case of temporal data,

one issue with pre-processing methods that modify the image

on a per-frame basis and that are image-statistics dependent

(e.g., anisotropic diffusion, histogram equalization, bilateral

filters, etc) is that modifications with different parameters

across consecutive frames can be counterproductive for feature

matching and description purposes. A small difference in

the local statistics of a feature point (caused by different

filtering parameters for different images) between consecutive

frames can decrease the performance of the algorithm. Our

own brief investigation indicated that the use of anisotropic

diffusion, bilateral filters or histogram equalization did not
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bring improvements to the feature point matching, although

there are conflicting reports in the literature discouraging [36]

or encouraging [37] the use of pre-processing in the visible

spectrum.
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