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Abstract— Image segmentation is a key topic in computer
vision, serving as a pre-step in a number of robotics tasks,
including object recognition, obstacle avoidance and topological
localization. In the literature, image segmentation has been
employed as auxiliary information in order to improve optical
flow performance. In this work, an alternative approach is
proposed, in which optical flow information is used to aid image
segmentation, aiming at scene understading for mobile robots.
The proposed system performs dense optical flow analysis,
followed by clustering of the optical flow vectors in a four
dimensional space (formed by the x and y positions, angle
and magnitude of each vector). Results from the clustering
are used as ‘seeds’ in the segmentation process, performed by
watershed segmentation in our implementation. In addition,
the flow ‘image’ is combined with the original image, gen-
erating an image better suited for watershed segmentation,
reducing the local minima effect often seen in this type of
segmentation algorithm. The main pipeline considers the use
of multi-modality cameras (visible and thermal-infrared). Since
they see substantially different information, multi-modality
further improves the amount of features of the resulting flows.
Experimental results in urban and semi-urban scenarios with
efficient segmentation illustrate the applicability of the method.

I. INTRODUCTION

The perception and understanding of objects is an im-
portant capability of robots which must interact with their
surroundings. Object perception is particularly important
in outdoor mobile navigation, where a rich amount of
elements populate the environment. A key—and perhaps
the most significant—part in generic object perception is
the segmentation stage. Bottom-up segmentation of natural
images is challenging and it is a generally ill-posed and
unconstrained problem, which has led to the development of
a number of different approaches [1], [2]. In this paper, we
propose a joint image segmentation method, using cameras
in both the visible and thermal-infrared modalities. The main
contribution lies in using optical flow information to assist
in the segmentation process, combining flow information
from both visible and thermal-infrared imaging. Rather than
focusing on image segmentation for human interpretation
only (which should analyze only visible spectrum images),
we consider the problem of scene understanding for a robot
or autonomous vehicle. Therefore, elements that would not
be necessarily separated with human assisted segmentation
(in case the image quality is poor) should still be segmented
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and identified by the robot when the goal is to achieve
optimal environment awareness. In this sense, the use of
thermal-infrared imaging is beneficial, capturing more of
the structure of the environment with information that is
not necessarily obvious in the visible domain, depending on
lighting conditions and illumination angle.

Two main aspects are addressed. First, many segmentation
algorithms benefit from the use of ‘seeds’, which can be
provided manually by a user or can be embedded in the
segmentation framework. This is the case in watersheds [3],
for example, which is the segmentation approach used in
this work. Therefore, clustering of the optical flow vector
in a four dimensional space (since each vector contains 2-
D position, magnitude and angle information) can provide
efficient seeds that improve the segmentation process. We
employ dense optical flow, which analyzes the full image
and does not rely on isolated points of interest, as is
the case in sparse optical flow. Second, in order to avoid
over segmentation, also common in watershed or mean-shift
segmentation [4], we propose the linear combination of the
original image with the ‘flow’ image. Although to a limited
extent, the flow information is correlated to depth. Therefore,
when the flow and the image are combined, the segmentation
is improved since different depths generally imply different
objects.

In contrast to other works which employ optical flow
for layered motion segmentation [5], [6], we consider the
full image image segmentation problem, jointly combining
motion and appearance. Similarly to [7], we consider optical
flow and image segmentation together. In [7], however, the
approach focuses on using hierarchical image segmentation
in order to find better optical flow under large displacements.
To validate the approach, we perform several experiments
using data from road in urban and unstructured areas.
The results indicate that on average, applying the proposed
method improves the segmentation performance, both in
single modality or using the joint thermal-infrared and visible
alternative.

This paper is organized as follows. Section II addresses
related work, contrasting it with the method proposed. Sec-
tion III presents the proposed method, which is addressed
from a multi-modal perspective in Section IV. Section V
presents experimental results on several outdoor datasets.
Relevant conclusions and future work are discussed in Sec-
tion VI.

II. RELATED WORK

Segmenting different objects and parts of an image or
video is a long-standing topic in robotic vision. Proposed



methods include saliency detection, semantic region identifi-
cation (sky, road, etc), and trained object detection. Beyond
single images, the problem can be approached by identi-
fying repeated patterns among pairs or sets of unlabelled
images [8], [9]. Because unknown parts of any frame may
present the repeated pattern, iterative refinement methods [8]
or graph-based segmentation of detected objects [9] can be
applied.

In contrast to single frames or an assorted set of snapshots,
long video sequences offer significant temporal consistency
elements. Video object/region segmentation (in a spatial
sense) frequently follows an interactive or supervised ap-
proach. With interactive methods, the user is required to
annotate object or region boundaries in certain key frames.
This information is then propagated to other frames while
errors can be manually adjusted [10], [11]. Semi-automated
tracking-based techniques attempt to decrease the amount of
supervision by assuming manual segmentation on the initial
frame only [12], [13].

Unfortunately, all methods above demand user input for
indicating areas of interest, and are therefore user dependent.
Bottom-up approaches, on the other hand, can segment frame
regions in a video in a fully automated way, using cues such
as motion and appearance similarity. Motion segmentation
techniques cluster pixels in video images applying bottom-up
motion cues. Common approaches include performing seg-
mentation considering a spatiotemporal video volume [14],
or starting with an image segmentation per frame and then
matching segmented regions in neighbouring frames [15],
[16]. Early works have also used watersheds and motion for
segmentation [17], however with focus on moving objects
on static backgrounds. Recently, two segmentation methods
using motion which are closely related to the work in this
paper have been proposed [18], [19]. In those methods,
tracking is performed to form long-term motion trajectories,
followed by affine motion clustering of these trajectories,
which is then used as input for segmentation. Other works
performed pure motion segmentation based on two-frame
optical flow, focusing more on motion layer extraction rather
than generic image segmentation [5], [6]. Layering methods
work well in traversal views with well defined planes, but
have limited performance in more continuous vanishing
views, such as a front vehicle mounted cameras. Extending
the analysis to 3-D, it is possible to perform structure from
motion and combine the 3-D point-cloud with appearance in
order to detect specific classes of objects [20], [21]. Using
machine learning, training is performed for the classification
of typical road elements (sky, road, cars, tree, building, etc).
In contrast to the works above, in this paper we perform
segmentation considering not only the pixel domain but also
the flow domain assuming a moving camera, as explained in
the following sections.

III. PROPOSED METHOD

The basic pipeline for the proposed method is shown in
Figure 1. The main idea is to use optical flow vectors as
an additional source of information in a image segmentation

framework. In our implementation, we use a gradient-based
watershed algorithm [22] for segmentation, due to its gener-
ally good performance. We extend the traditional watershed
implementation to consider not only the luminance informa-
tion in the gradient based watershed, but also the topolog-
ical optical flow information, obtained from the difference
between consecutive frames. Optical flow information is
applied in two ways: (i) by combining (weighted summation)
the optical flow “image” F and the original image V into
a third image S, which is then segmented, and (ii) by
clustering the optical flow vectors and using the clusters
as seeds (represented by the set Φ) in the segmentation
process. Figure 2 illustrates the topological structure of the
flow representation corresponding to the visible spectrum
image in Figure 4. This figure indicates that the optical flow
topology is potentially applicable to a watershed segmenta-
tion framework, presenting even better defined “hills” and
“valleys” than normal images, therefore being less prone to
oversegmentation, as discussed in Section III-B. More details
about each of the modules is given next.

A. Dense Optical Flow

Although generally not as stable over time as their sparse
counterpart, dense optical flow is preferred because it pro-
vides a more comprehensive indication of the flow over
the whole frame, instead of relying only on feature points.
Among dense optical flow algorithms, the three dimensional
(3D) structure tensor methods [23], [24] have gained popu-
larity due to their noise robustness and low systematic error.
Therefore, we employ this technique in this paper. In order to
work satisfactorily, 3D structure tensor techniques consider
the brightness change constraint, which assumes that a given
feature will have constant luminance from one frame to the
next, and it will only undergo local translations. In order
to regularize the results, it builds the tensor for each pixel
element within its surrounding pixels, where the local optical
flow is considered invariant. The optical flow estimation is
then converted to an eigenvalue analysis problem. Because
the locally constant optical flow assumption is often not met
in real applications, the 3D structure tensor technique can
be extended to use the affine motion model. In this case
the tensor is defined by projecting the image into a second
degree polynomial and integrating the affine model into the
tensor, where a linear system framework solves for the affine
parameters [24].

B. Joint Segmentation

The joint segmentation stage combines the input image
and its corresponding optical flow representation into a
single matrix (this operation is represented by the block
O in Figure 1) , which is then applied to the watershed
segmentation process. Let V be the input image and F rep-
resent the flow image corresponding to V. The two images
are combined according to a weighted sum given in (1),
which depends on a confidence level α of each flow vector.
This confidence measure estimates the correctness of each
displacement vector. Therefore, vectors with a lower α have



Fig. 1: Block diagram illustrating the basic pipeline of the
proposed method. The segmentation stage considers a multi-
channel input, consisting of the raw input image and the
dense optical flow representation in the corresponding frame.
It also considers seed locations provided by the clustering of
the optical flow vectors.

Fig. 2: 3D representation of the flow magnitude, illustrating
well defined “hills” and “valleys”. The corresponding visible
image that generated this flow is shown in Figure 4.

a reduced influence in the final segmentation. To estimate the
confidence measure, we employ an intuitive method based on
linear subspace projections [25], obtaining “eigenflows” from
the original optical flow signal. In summary, the confidence
measure is estimated given the assumption that the better
the displacement vectors can be reconstructed, the more
reliable they are around their neighborhood. Therefore, the
reconstruction error of the flow vector is used as a confidence
measure.

The final watershed segmentation is performed over “im-
age” S, whose i-th element is given by

si =
1

1 + αi
(vi + αi|fi|) (1)

where αi is the confidence measure for the i-th optical flow
vector in F, and vi and fi are the i-th element of V and
F, respectively. The operator | · | represents the magnitude
of the flow vector. The experiments in Section V show the
results of the combined segmentation on S.

C. Outlier Removal and Clustering

As mentioned, in addition to being included as a topo-
logical region in the segmentation process, the flow vectors

can also be used as efficient seeds in the segmentation.
An important step once the dense optical flow estimation
is performed is to apply RANSAC [26] to reduce the
influence of noisy vectors. Assuming an approximation that
the cameras move on a surface plane (since they are mounted
on a vehicle) the great majority of correct optic flow lines
follow the same direction as their neighbours. Therefore,
outlier removal is done by simply eliminating optic flow
vectors whose direction differ in a given amount from the
average optic flow direction.

This reduces the impact of outliers that potentially cause
false local minima in the watershed segmentation.

The optical flow vectors in the camera are rarely induced
from one object only. In a normal scene there are several
objects, each inducing optical flow in the image. Therefore,
it is possible to cluster the optical flow vectors according to
their source.

Within a frame, each induced optical flow vector is de-
scribed by its x position, y position, angle θ, and magnitude
A. Let Df represent the description of the optical flow
vectors within the given frame, f . For this frame, the optical
flow information is given as

Df =


x1 y1 θ1 A1

x2 y2 θ2 A2

...
...

...
...

xK yK θK AK

 , (2)

where K is the number of flow vectors in the frame. We
cluster the optical flow vectors according to their location,
magnitude and angle by employing Gaussian Mixture Model
(GMM) in a 4 dimensional space. The center (mean) of
each cluster is projected onto the 2-D image space is used
as a seed in the segmentation process. A mixture model
is a probabilistic model for representing the presence of
sub-populations within an overall population. Formally, a
mixture model corresponds to the mixture distribution that
represents the probability distribution of observations in the
overall population. GMM’s are efficient in clustering within
normal distributions. With the reasonable assumption that
the distribution of the magnitudes of the induced optical
flow vectors is normal [27], GMM’s can be employed to
cluster the data according to their source. The number of
clusters is defined using a standard methodology in which
an expectation-maximization algorithm estimates the finite
mixture models corresponding to each number of clusters
considered and using Bayesian inference criterion to select
the number of mixture components, which is then set as
the number of clusters [28]. This approach usually gives a
number of clusters between 20 and 60 in typical outdoors
images.

IV. MULTI-MODAL SEGMENTATION

Visible cameras are common imaging sensing devices
that have been extensively exploited for robot perception,
navigation and localization. However, due to the limited
range of the spectrum (visible spectrum range from 0.4 −
0.7µm) that these imaging sensors operate at, they have been



restricted by changing atmospheric, weather and illumination
conditions in challenging environments. Recently, there has
been increasing interest in using alternative imagery sensing
modalities for robotics applications that are more robust to
environmental conditions. Alternative image sensing modal-
ities (e.g., near-infrared, thermal-infrared) can sense the
environment at various electromagnetic wavelengths beyond
the visible spectrum. Moreover, information from multiple
modalities can be integrated to enhance the scene perception
and understanding.

Thermal-infrared imagery, which captures radiation emit-
ted from the surfaces of objects relative to their temperature
(long-wave infrared (LWIR) wavelengths from 7 − 14µm),
is an alternative sensing modality that has been recently
employed for several robotics perception applications [29],
[30]. Thermal-infrared and visible images have very different
statistics and power spectra [31]. Thermal-infrared cameras
have several advantages compared to visible-spectrum cam-
eras. Thermal-infrared cameras detect radiation emitted from
the scene without using an external illumination source.
Hence, it is invariant to lightning conditions and can operate
over nights and in total darkness. These cameras are more
robust in challenging environmental conditions such as pres-
ence of fog, or dust. Thermal-infrared images contain less
high-frequency textual information (less clutter) compared
to visible spectrum; thus can be employed to improve scene
segmentation and understanding.

The advantages of using thermal-infrared images are more
evident in the outdoors robotics application scenario, where
stronger temperature variation is usually present. In addition,
visible spectrum cameras often suffer from over or under
exposure outdoors, depending on illumination conditions.
In these cases, thermal-infrared cameras can often identify
objects which are not always seen in the visible spectrum.

Therefore, we combine information from these alternative
sensing modalities to provide enhanced scene segmentation
and richer environment models. The proposed approach
discussed in previous section can be extended to multi-modal
images, and a full framework combining both modalities is
proposed.

In this case, the processing pipeline is represented by
the diagram shown in Figure 3. The visible and thermal-
infrared images are assumed registered and calibrated (as
discussed in Section V-A), which are fed into the dense
optical flow algorithm [23]. In our implementation, the com-
bination represented by the triangle (O) in Figure 3 is done
by averaging the two images, although other techniques can
be used [32]. Figure 4 illustrates the concept, showing two
images, thermal-infrared and visible, and their corresponding
optical flow vectors. Figure 5 shows the difference in optical
flow energy for the thermal-infrared and visible modalities.

For the gathering and pre-processing the thermal-infrared
data, we use the algorithm developed by Vidas et al. [33].
Modern thermal-infrared cameras usually consist of 14-bit
monochromatic images. In natural environments, however,
the intensity range is typically much smaller than 14-bits, and
the histogram normalization to a conventional 8-bit image

Fig. 3: Block diagram illustrating the full processing chain,
combining the visible and thermal-infrared (TIR) images.

(a) Visible image flow. (b) Thermal-infrared image flow.

(c) Resulting segmented image.

Fig. 4: Illustration of the flow vectors and the resulting
segmented image (overlaid with the original visible image).



(a) Visible Image (b) Thermal-infrared Image

(c) Visible image horizontal flow. (d) Thermal-infrared image horizon-
tal flow.

(e) Visible image vertical flow. (f) Thermal-infrared image vertical
flow.

Fig. 5: Image illustrating the difference in optical flow energy
for the thermal-infrared and visible modalities.

is an alternative to simplify processing and make it more
effective. In this paper, we follow an efficient normalization
procedure [33] which involves averaging the minimum and
maximum intensity for a frame, and then normalizing the
range spanning from 256 less than this average value to
256 greater than this value to the 8-bit interval of [0,
255], according to

pi = 255
pi −min(P)

max(P)−min(P)
(3)

where pi represents the i-th element in thermal-infrared
image P. This scaling corresponds to a quantization factor of
2 and preserves the texture in areas of high and low contrast.
Moreover, temporal smoothing is also employed [34] to
avoid the normalization mean being shifted by more than
L levels relative to the previous frame.

When using both modalities, the inappropriateness of
sparse optical flow becomes evident, as there is very small
correspondence (particularly with respect to their positions
in the image) between the flow vectors in each domain.
Therefore, combined key point and variational methods [7] is
not an adequate alternative in this case. For illustration pur-

(a) SIFT matching.

(b) SURF matching.

Fig. 6: Examples illustrating the lack of matches between
the thermal (left) and visible (right) modalities, for SIFT and
SURF detectors/descriptors.

poses, the results in Figure 6 indicate that no correspondence
is found between the thermal or visible images, for SURF
and SIFT detector/descriptors tests. The green lines indicate
the failed homography estimation between the modalities, as
expected.

V. EXPERIMENTS

In this section we present experimental results, comparing
the proposed approach to other traditional segmentation
algorithms.

A. Practical Considerations

For the experiments, a Thermoteknix Miricle 307K
thermal-infrared camera and a Basler scA780 visible spec-
trum camera were used. The cameras were mounted on a
car and driven in urban and semi-urban environments in
Australia, with roads, trees, traffic lights, and buildings.
The approximate route is indicated in Figure 7, covering
nearly 6 kilometers. The thermal-infrared camera consists of
a long-wave uncooled microbolometer detector sensitive in
the 7− 14µm range, with resolution of 640× 480. It is able
to see objects in the −20 to 150 ◦C, and it has a NEDT
(Noise-Equivalent Differential Temperature) of 85mK. In
our implementation, we used the ROS (Robotics Operating
System) [35] package developed by Vidas et al [33], which
contains a FFMPEG4 based driver for streaming off the
thermal camera.1. This package also provides an efficient
module for the calibration and registration of the thermal-
infrared and visible cameras.

The data was logged using ROS and the resulting frame
rate was approximately 14 frames per second. In addition to
our own footage, the proposed algorithm was also tested with
footage from the Hopkins 155 dataset [36]. Although the

1This open-source ROS package is available online for download from
http://code.google.com/p/thermalvis-ros-pkg



Fig. 7: View of the 6 kilometers driving route used for
gathering data.

scope of this dataset is more focused on motion segmentation
and does not contain thermal-infrared imaging, we used it in
our tests since the dataset annotated with the segmentation
ground-truth.

B. Results

The results presented in the following compare the pro-
posed algorithm with standard segmentation methods. The
results are divided in three main parts:

• Standard watershed segmentation, without optical flow
information.

• Separate image segmentation for the visible and
thermal-infrared modalities, combining image and opti-
cal flow information, as discussed in Section III.

• Duo-modality image segmentation, combining visible
and thermal-infrared data and their respective optical
flow information.

Figures 8 and 9 illustrate the results for plain watershed
segmentation (second row) compared to the proposed seg-
mentation obtained by using optical flow information (third
row). Finally, the fourth row shows the final result of the
full segmentation pipeline, combining both modalities. In
both figures, the results illustrate the benefits of using optical
flow as well as the multi-modality setup as an alternative to
visible cameras only. Several objects of similar characteris-
tics are properly separated, with reduced over segmentation.
A similar behavior is observed when applying the proposed
approach to the Hopkins 155 dataset, with an example given
in Figure 10. To quantify the results on this dataset, we
compare our segmentation with the ground-truth provided for
some objects (since only foreground objects are labeled) by
overlapping segmented areas with the annotated foreground
objects. For this evaluation, we use the average per-frame
pixel error rate [37] given by

ε(m) =
|XOR(m, g)|

N
(4)

TABLE I: Quantitative comparison according to (4), consid-
ering annotated foreground objects only. Lower values are
better. These results are based on ground-truth data from the
Hopkins 155 dataset.

Method Score ε
Standard Watershed [22] 2890
Trajectory Analysis [18] 699

Proposed 801

TABLE II: Average execution time for the main stages of
the pipeline. The ‘Others’ row include the pre-prossessing
and summing junctions.

Stage Execution Time (ms)
Dense Optical Flow 16.55

Clustering 9.90
Flow Confidence Measure 1.19
Watershed Segmentation 13.09

Others ∼ 2.00
Total 42.73

where m corresponds to each method’s segmentation, g is
the ground truth, N is the number of images tested and
XOR is the exclusive-OR operation. Table I shows the
results, comparing the proposed algorithm with standard
watersheds [22] and long term motion segmentation [18].
It is important to note that in both cases, the comparison is
only indicative, since the first method [22] does not exploit
motion and the second method [18] does not embed any
still image segmentation analysis. We notice that using this
metric, the long term trajectory presents the best results. One
reason for this is that the objects used for the segmentation
evaluation are foreground objects with motion, which is the
focus of the long term trajectory algorithm. In contrast, the
qualitative evaluation indicates that for background objects,
our proposed method presents better performance, segment-
ing elements that are on the same plane and distance from
the camera, since it also performs still image segmentation
analysis.

Another positive aspect of the proposed architecture is
its relatively low computational complexity, running in real-
time at 14 frames per second. Table II shows the average
computation times for each part of the algorithm for the
image resolution employed, running Linux Ubuntu on a 2.6
GHz Intel Core i7 with 4GB of RAM. The results indicate
that with the current implementation it is possible to achieve
approximately 23 frames per second. As a comparison,
methods that perform motion segmentation using long term
trajectories [18], for example, achieved approximately 0.39
frames per second running on the same machine.

VI. CONCLUSIONS

We have proposed a new video image segmentation
method which jointly analyzes pixel and optical flow infor-
mation. In each frame, optical flow “images” are combined
with the original images, such that the output image presents
better segmentation properties. In addition, optical flow vec-
tors (which are described by position, angle and magnitude
information) are clustered in space and the results are used



(a) Input Thermal-infrared image. (b) Input Visible Image.

(c) Standard segmentation based
only on the thermal-infrared image.

(d) Standard segmentation based
only on the visible image.

(e) Segmentation based on the
thermal-infrared image and OF.

(f) Segmentation based on the visi-
ble image and OF.

(g) Segmentation based on the visible and thermal-infrared imaging and
OF.

Fig. 8: Segmentation results inside parking lot. Key: OF:
Optical Flow.

as seeds in the segmentation process. We illustrate the
application of the method in several kilometers of driving in
urban environments and semi-urban roads, with road, trees,
traffic lights, signs and other elements. Apart from the main
optical flow analysis, we combine information from visible
and thermal-infrared cameras. The results indicate that the
proposed method improves the segmentation performance

(a) Input thermal-infrared image. (b) Input Visible Image.

(c) Standard segmentation based
only on the thermal-infrared image.

(d) Standard segmentation based
only on the visible image.

(e) Segmentation based on the
thermal-infrared image and OF.

(f) Segmentation based on the visi-
ble image and OF.

(g) Segmentation based on the visible and thermal-infrared imaging and
OF.

Fig. 9: Segmentation results on highway. Key: OF: Optical
Flow.

compared to other well known methods.
One current limitation is that the system does not deter-

mine which modality is performing better at a given frame, or
region inside a frame. Therefore, it cannot determine whether
thermal-infrared or visible images should have more rele-
vance when both modalities are combined. In this direction,
future work includes incorporating a relative quality metric



(a) Flow image on the ‘cars9’
sequence.

(b) Segmented image from the
‘cars9’ sequence.

Fig. 10: Segmentation example on the Hopkings 155 dataset.

between the two modalities, in order to perform a more
efficient modality combination. In addition, the combination
of the images can be done adaptively, according to the global
or local contrast of each modality. It is also important to
evaluate the approach with other types of segmentation, such
as mean-shift algorithms, for example. From an application
perspective, future work will also consist of adding the
method into a topological localization framework, applied
to mobile robots.
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