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Abstract— The ability to drive autonomously in heteroge-
neous environments without GPS, pattern identification (e.g.
road following), or artificial landmarks is key to field robotics.
To address this challenge, we present a complete waypoint
navigation framework for unmanned ground vehicles. A Velo-
dyne PUCK VLP-16 LiDAR and an IMU are mounted on an
autonomous, full size utility vehicle and used for localization
within a previously created base map. We redesign a six degrees
of freedom LiDAR SLAM algorithm to achieve 3D localization
on the base map, as well as real-time vehicle navigation. We
fuse the low-frequency, high precision SLAM updates with high-
frequency, odometric local state estimates from the vehicle. The
navigation costmap consists of a 2D occupancy grid which
is computed from the 3D base map. Relying on this setup,
the vehicle is capable of navigating through a complex site
completely autonomously. The test site has densely and sparsely
built areas, bushland, industrial activities, pedestrians, and
other manned or unmanned vehicles. Extensive testing was done
using both current and outdated base maps for comparisons,
and a high precision RTK-GPS was used for ground truth. So
far, more than 60 km of completely autonomous driving has
been performed without a single system or navigation failure.

I. INTRODUCTION

One of key challenges in robotics is unmanned ground
vehicle (UGV) navigation in outdoor environments without
dedicated infrastructure. Although much effort is currently
being put into autonomous cars [1], [2], UGVs also find
application in industrial and warehouse automation, mining
and agriculture. In this paper, we present a novel navigation
pipeline for UGVs discussing solutions for the localization
and navigation modules. Full 3D localization is done by
adapting an existing 3D SLAM algorithm [3], which was
developed at CSIRO1. For clarity, we refer to this algo-
rithm as CSIRO SLAM (C-SLAM) throughout this paper.
Similarly, the localization framework that we present is
referred to as C-LOC. Based on 3D LiDAR and IMU,
C-LOC is very reliable and works in real-time. In C-LOC,
we propose a pyramidal multi-level surface element (surfel)
map which is used for accurate localization with update
rates of approximately 1 Hz in our implementation. Since
this update rate is not sufficient for vehicle control, we
combine the C-LOC output with odometric information for
control in-between C-LOC updates. Moreover, the odometric
information is used to overcome a small delay originating
from the C-SLAM algorithm. Relying on the real-time 3D
pose of the vehicle and a 2D occupancy grid for path plan-
ning, we perform autonomous waypoint navigation. With a
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Fig. 1. Automated John Deere TE Gator, an electric, full size utility vehicle
used for all experiments in this paper. The Velodyne PUCK is marked with
a red circle, the 2D Hokuyo LiDARs with blue circles and one of the rear
wheel encoders with a purple dot.

simple user interface the vehicle can be commanded to drive
anywhere in QCAT, a CSIRO site in Brisbane, Australia. For
additional safety, 2D LiDARs are placed on each corner of
the vehicle to assist in avoiding collisions in any direction.

The algorithms are implemented on a John Deere TE Gator
(Fig. 1), a full size utility vehicle which was automated
by our team at CSIRO. The Gator is able to perform
completely autonomous waypoint navigation while avoiding
obstacles in the heterogeneous environment of QCAT. Our
experiments consist of dozens of runs of more than 1 km
each, totalling approximately 60 km of autonomous driving
under normal site operations, with other vehicles, forklifts,
pedestrians, courier delivery trucks, etc. The heterogeneous
test area consists of a constantly changing parking lot, narrow
and wide passages between high buildings, open areas and
bushland regions. Fig. 7 shows the area, with waypoints and
one of the driving paths overlaid in red.

The C-SLAM algorithm was first presented by Bosse and
Zlot [3], followed by further improvements and application
domains [4], [5], [6]. In this paper, we adapt a more recent
version using a nodding 3D Velodyne PUCK LiDAR instead
of the 2D Hokuyo LiDAR version [4]. The mapping output of
C-SLAM can be further improved with place recognition [7],
[8], which identifies similar physical regions of the environ-
ment in laser scans collected at different times. Hence, place
recognition is used to identify loop closure in single datasets
or merge multiple datasets together.

The six degrees of freedom (6 DOF) LiDAR C-SLAM
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Fig. 2. Overview block diagram of all the relevant parts of this project to perform autonomous waypoint navigation. (Key. LF: low frequency; HF: high
frequency)

algorithm is able to create accurate 3D point cloud maps and
a commercial version for mapping is available1. Alternatives
include LOAM (Lidar Odometry and Mapping in Real-
time) [9] and an enhanced version with visual odometry [10].
In contrast to C-SLAM, LOAM considers corrections in the
trajectory rather than to the trajectory in the state. Moreover,
LOAM does not perform loop closure.

Several works show accurate 3D SLAM capabilities using
aerial vehicles [11] or ground vehicles [12], [13], although
they also do not discuss autonomous navigation. Another
approach [14] uses a UGV to navigate its environment
based on a real-time available 3D point cloud which is used
to create an occupancy grid for the path planner. From a
ground station this vehicle is tele-operated using the real-
time available point cloud.

Regarding operation, a similar UGV to the one presented
in this paper is SMART, a driverless golf cart [15] which
however relies on curb lines for navigation.

One of the key aspects of the system presented here is that
it does not rely on GPS, dedicated infrastructure, specific
environment models (e.g. curbs), lane following or object
recognition. It only requires a single scan of the environment
(for map creation) and is resilient to significant changes in
the base map, as discussed later.

The remainder of this paper is structured as follows. In
Section II we first give an overview of the entire navigation
framework (II-A), followed by a description of the underly-
ing C-SLAM algorithm (II-B). Subsequently, in Sections II-C
and II-D we describe the technical contributions that form
C-LOC. A list of the main hardware components (III-A)
and additional software implementations required to achieve
full autonomous waypoint navigation (III-B) are presented
in Section III. In Section IV we describe experiments, with
results from current and outdated maps which are evaluated
against ground truth from an RTK GPS. Final conclusions
are drawn in Section V.

II. METHODOLOGY

Our goal is to perform completely autonomous waypoint
navigation in a heterogeneous industrial/natural environment
setting without GPS and using only inertial and LiDAR
information. In this section, we present a summary of the

1https://geoslam.com

navigation pipeline followed by a detailed description of each
module.

A. System Overview

We initially build a 3D base map for localization pur-
poses and from this map we create a 2D occupancy grid
for navigation. The 3D base map is accurate (centimeter
precision) as it is built offline with drift removed using global
registration. In a navigation scenario, though, the map used
for localization does not necessarily have to be extremely
accurate. Experiments conducted over multiple months have
proven that good localization results are obtained using
C-LOC even in changing environments such as a parking
lot with moving cars or a bushland area which is subject
to vegetation change. The localization algorithm C-LOC
outputs a 6 DOF pose at a low frequency around 1 Hz with a
delay behind real-time due to data buffering [3]. This makes
the algorithm unsuitable for real-time vehicle control, which
requires a faster update rate.

To overcome this limitation, we fuse this delayed, low
frequency 6 DOF pose with any kind of high frequency
odometry information, obtaining a real-time pose at a high
frequency, which is suitable for vehicle control. The con-
troller then compares the robot pose with a reference path,
taking into account a 2D occupancy grid of the environment
and the obstacles detected by the 2D LiDARs. Using the
output of the controller, a heading and a linear velocity
command, the UGV can perform precise, fully autonomous
waypoint navigation on all roads of QCAT. An overview of
the full navigation pipeline is shown in Fig. 2.

B. C-SLAM Overview

The 3D C-SLAM algorithm uses an iterative non-linear
least squares approach referred to as sweep-matching. Con-
secutive sweeps over the environment are compared to each
other by first (i) identifying corresponding surfels from the
LiDAR point cloud and secondly (ii) updating the trajectory
such that the errors between matching surfels and the devia-
tion from the measured IMU accelerations and rotational ve-
locities are minimized. These two steps (the correspondence
and the optimization step) are repeated until convergence
is achieved. Surfels are calculated by statistically analyzing
points that are both spatially and temporally close together.
They contain information about the average, the variance and
the surface normal of the ellipsoid of best fit.

https://geoslam.com
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Fig. 3. For localization, only surfels within a 50 m radius (R) are used.
Fixed surfels can be seen in blue, local surfels in green and the localizing
UGV is shown with a green box.

In the correspondence step, surfel matches are obtained
by approximate k-nearest neighbor search of a kd-tree in
the 6D space of surfel positions and normals. For every
matched pair a match error is computed which is then
minimized in the optimization step. During the optimization
step the surface correspondence error, the IMU measurement
deviations and the initial condition constraints are minimized
by adjusting the current trajectory estimate. The non-linear
set of equations are linearized about the current best estimate
by taking a first-order Taylor expansion and then solved by
iterative re-weighted least squares.

Apart from open-loop SLAM, the C-SLAM algorithm [4]
can also be used to produce a closed-loop trajectory by
applying global point cloud registration, given an initial
guess for the trajectory. This initial trajectory guess can
be the open-loop solution explained previously. Generally,
drifts larger than 10 m in the open-loop trajectory cannot be
corrected by global registration. In this case, we use a place
recognition algorithm [8] as an identification step before
running global registration.

Both in C-SLAM (to create the base map) and the on-
line C-LOC (used for real-time vehicle localization), new
incoming data are processed in a sliding window fashion: A
time-windowed segment of the trajectory (currently 3 s) is
processed, then the window is advanced by a fraction of its
length (currently 1 s). Each trajectory segment is processed
by solving a linearized system of equations to obtain the
trajectory which best explains corresponding surfels in the
associated 3D point cloud while taking into account the
boundary conditions which ensure continuity with the previ-
ous segment.

It is important to mention that the C-SLAM algorithm
was never used for fast localization but only for accurate
mapping, hence one of the contributions of this paper is
adapting it for real-time localization.

C. C-LOC Overview

The C-LOC algorithm is, as previously mentioned, an
adaptation of C-SLAM which allows for real-time full 3D
localization within a prior built base map. C-SLAM keeps
a number of surfels from recent past views, so called
fixed-views. In order to limit the computational complexity
from generating and processing those additional fixed surfel
matches, a rolling window approach is used where only
recent past views are considered. Those fixed surfels are
additionally used to minimize the match error and help
reduce the accumulated drift.

However, our goal in this work is to perform autonomous
waypoint navigation based on a previously created map.
Therefore, we eliminate the process of keeping surfels from
recent past views as done in C-SLAM. Instead, for C-LOC,
we consider a subset of all the fixed surfels of the previously
created map. This C-LOC map is created in the following
steps: first (i) from the point cloud of the environment and the
associated trajectory an initial map is created that contains
surfels based on not only on position but also viewpoint.
This is important when localizing against small objects which
can be seen from opposite sides such as lamp posts or
branches. In case surfels were created only based on position,
localization would be possible only from the side where the
normals point in the same direction, since localization relies
on the surfel normals to agree. In a second step, (ii) we
voxelize this initial surfel map using the Point Cloud Library
(PCL) [16] octree filter where we randomly select one surfel
per voxel to ensure having surfels from different viewpoints.
We create the surfels in a pyramidal fashion with voxel
resolution of (0.4 m, 0.8 m, 1.6 m, 3.2 m) which is key for
reliable localization. Hence, the result is a multi-level surfel
map which is well suited for real-time vehicle localization.
When running the online C-LOC algorithm, we use only
the fixed surfels within a radius of 50 m around the position
of the LiDAR (see Fig. 3) as this is sufficient for efficient
localization and limits the computational complexity.

D. Odometry Fusion

In C-SLAM and C-LOC, the optimization problem is
solved in a sliding window fashion which buffers data and
causes the 6 DOF pose to be delayed [3]. Every time the
optimization is finished, a series of poses is output. The
minimum delay a pose can have, consists of the time required
to solve the optimization problem, roughly 0.25 s in the
current setup. However, the oldest pose in this series will
have a delay of 1.25 s since we use a window shift of 1 s.
In addition, the C-LOC pose is not just delayed but also
output at a low rate of 1 Hz. For control purposes, this is both
too slow and too far behind real-time. We therefore address
those two problems by integrating the locally accurate wheel
odometry between two consecutive C-LOC poses. As wheel
odometry is received, it is integrated from the time of the last
received C-LOC pose. Since the wheel odometry is published
at a relatively high frame rate of 10 Hz, this produces a
trajectory estimate that is sufficient for controlling a UGV at
a low speed.



III. IMPLEMENTATION-SPECIFIC CONSIDERATIONS

In this section, we discuss the specific hardware configura-
tion, followed by implementation-specific software solutions.

A. Hardware

The main hardware modules are the following:
• Gator: All experiments are performed using a John

Deere TE Gator, an all-electric utility vehicle. The
base vehicle was automated by our Team at CSIRO.
Hence, the vehicle can be driven both manually or
autonomously. Four 2D Hokuyo UTM-30LX LiDARs
are used for local obstacle avoidance and coverage of
the back of the vehicle. The localization algorithm runs
on a nodding Velodyne VLP-16 PUCK LiDAR jointly
with a Microstrain 3DM-GX3-25 IMU.

• Dell workstation: Customized Dell Precision M4800
with a 2.9 GHz Intel Core i7 4910MQ CPU, 32 GB of
RAM and an Intel Haswell Mobile graphics card. The
workstation runs on Ubuntu 14.04 and is used with the
Robot Operating System (ROS) Indigo.

• Microcontroller: A smooth nodding motion is gener-
ated by sending commands to the serial port of the
Dynamixel servo at 40 Hz. Using a separate micro-
controller, the Atmel AVR XMEGA, the load on the
workstation, which runs all the high-level algorithms,
is reduced.

• Clock: A u-blox evaluation kit EVK-M8MEVA is used
to create a precise Pulse Per Second (PPS) signal to
synchronize the 3D LiDAR and the IMU.

• 3D LiDAR: We use a Velodyne VLP-16 PUCK LiDAR
with a Horizontal Field of View (HFOV) of 360 ◦ and a
Vertical Field of View (VFOV) of 30 ◦. The PUCK runs
on firmware 3.0.32.0 and reports up to 289’351 points
per second using its 16 different laser channels with the
rotation rate set to 20 Hz.

• IMU: A Microstrain 3DM-GX3-25 is rigidly attached to
the Velodyne PUCK. Both sensors are tightly coupled
and used for full 3D localization. The orientation of the
IMU is used to transform the Velodyne points into a
world fixed reference frame and the accelerations are
used as a motion prior.

• Servo: A Dynamixel MX-106R servo motor, which is a
contactless absolute encoder is used to create a nodding
motion with the Velodyne PUCK. Currently the PUCK
is nodded ± 30 ◦ at a frequency of 70 ◦/s. The nodding
setup is illustrated in Fig. 4.

B. Software

1) Point Cloud Filters: We subsample the Velodyne
point cloud before feeding it into the localization algorithm
C-LOC, for computational speedup. First, we create a ring
filter to reduce the 16 beams to only 4: the top, the bottom
and two equally spaced in the middle. In addition, we
further reduce the amount of points by voxelizing the entire
point cloud. This is done using the PCL octree filter with
a minimum voxel resolution of 10 cm. Using this nodding
setup together with a reduced number of beams leads to an

3D LiDAR

IMU

Servo

Fig. 4. Nodding setup consisting of the Velodyne PUCK 3D LiDAR, the
Microstrain 3DM-GX3-25 IMU and the Dynamixel MX-106R servo.

increased field of view with spatial diversity while keeping
the computational effort small.

2) Map Creation Using Offline C-SLAM: We create the
3D base map used for localization by manually driving
around the QCAT site and recording the synchronized Li-
DAR and IMU data. For map creation, the LiDAR data are
again subsampled, but in this case only using the octree voxel
filter (the ring filter discussed above is used only during
online localization C-LOC). The recorded information is then
processed offline, generating: (i) a 3D point cloud of the
environment; (ii) the 3D LiDAR trajectory driven during data
recording (see Fig. 5).

3) 2D Occupancy Grid Creation for Navigation: Unlike
the full 3D localization C-LOC, the entire navigation pipeline
runs in 2D and we therefore need to create a 2D map from the
3D map. We use a volumetric 3D environment model, based
on the Octomap algorithm [17]. Octomap is a 3D occupancy
grid framework relying on octrees which uses a probabilistic
occupancy estimation. This framework represents not only
occupied but also free and unknown cells. Hence, the entire
environment is represented by small 3D grid cells, so called
voxels. We use a grid resolution of 20 cm which represent the
environment accurately enough for autonomous navigation.

Our 2D occupancy grid representation is obtained by
down-projecting the 3D voxel grid. Before this is done, we
filter the grid by setting voxels from the ground and from
collision-free overhanging structures as free. Otherwise those
voxels would appear as obstacles in the 2D map, which is
not desired since we require a map where only obstacles
relevant for the ground vehicle are shown. In addition, a box
filter marks as free all the voxels which lie in a box around
the LiDAR trajectory and therefore guarantees a free path.

The final 2D occupancy grid map which is used for
navigation can be seen in Fig. 6. Obstacles are marked black,
free space where the Gator can drive is white and unknown
space is grey. It is worth mentioning that we did not include
the hill observed in Fig. 5 into the occupancy grid in Fig. 6,
due to the fact the experiments in this paper are limited to
paved roads, which do not exist on the hill.



Fig. 5. Height coded 3D point cloud map of the entire QCAT site including
the 3D LiDAR trajectory in white. The entire point cloud consists of about
315 million points and covers an area of 160’000 m2. Units are in meters.

4) Controller and Path Planner: We use the ROS navi-
gation stack2 for computing heading and velocity commands
to navigate in autonomous mode. More specifically, we use
move base3 to combine both a local and a global path
planner for navigation. In order to do this, move base uses
the 6 DOF pose, the 2D occupancy grid map and the four
Hokuyo LiDARS as an input.

We use costmaps from the navigation stack to define where
the robot is allowed drive. They contain information from
both static maps and live sensors such as LiDAR data. By
using costmaps we can customize the generated trajectory
of the path planner, without modifying the actual planner.
In our implementation, we used the navfn global planner
available in the ROS navigation stack. The planner works
on Dijkstra’s shortest path algorithm and computes paths
for omnidirectional robots which are able to move in any
directions instantaneously [18]. To use this path planner with
an Ackermann-steering vehicle we restricted the allowable
paths at the starting and goal point since the Gator can neither
start nor reach the final waypoint by moving in any direction.

To solve this issue, we implemented a costmap layer which
raises the cost in a U shape both around the starting point,
where the U is open in the forward direction, and also around
the goal point where the U acts like a bay. The raised cost
is chosen such that the path planner considers the U shape
as a normal obstacle and will never traverse those barriers.
Hence, the vehicle can only leave its starting position in the
forward direction and reach its goal point in the direction in
which the U shape is open. This goal direction is specified by
the user selected waypoint which consists of an x, y position
and an angle ψ.

Another costmap for navigation helps the path planner
create desirable paths. The idea is to input one or multi-
ple manually driven paths into the navigation pipeline and
slightly lower the cost along those routes. Since Dijkstra’s
shortest path algorithm searches for the path with the lowest
cost, it automatically favors those previously driven routes.
However, this does not restrict the drivable area in any
way and the vehicle can still drive everywhere in the map

2http://wiki.ros.org/navigation
3http://wiki.ros.org/move_base

Fig. 6. Occupancy grid map (approximate scale: 420 m x 400 m) from the
QCAT, Pullenvale site, created with a grid resolution of 20 cm.

even if there is no manually driven trajectory input into the
navigation stack. During all the experiments presented in this
paper one single manually driven trajectory was input into
the navigation stack.

IV. EXPERIMENTS

To illustrate the applicability of the system, we completed
various autonomous driving experiments at QCAT. First, ten
runs using a “recent map” are presented. Second, five loops
are performed using an older, outdated map. In addition, we
use a high precision RTK GPS to compare the trajectory
generated by the C-LOC algorithm to the real world. Finally,
dozens of runs are made on a longer and more complex route.

During all the autonomous runs, the Gator drove between
1 m/s and 1.5 m/s and was supervised by an operator.

A. Overview of the Test Area

QCAT is a heterogeneous site and consists of areas with
very different characteristics as illustrated in Fig. 7. Each
region presents its own challenges. The blue region con-
tains a large parking lot with constantly moving cars. This
makes both localization and navigation more challenging.
In the red region, mostly buildings are present. Using the
Velodyne PUCK, localization is relatively easy in this area
since buildings are static and hence the base map is very
similar to the live LiDAR observation. Finally, the green
region consists of a road delimited by trees and bushes. This
region is particularly challenging for localization, especially
in areas where only bushes are present because they grow,
get frequently cut, drop their leaves and easily move with
the wind.

http://wiki.ros.org/navigation
http://wiki.ros.org/move_base
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Fig. 7. Google Earth image of the QCAT site, with different regions
highlighted. The blue region is a parking lot with continuously moving
cars. In the red region, mostly buildings are present and in the green
region, bushes and trees are dominant. Additionally, the autonomously
driven trajectory (red line) with the four specified waypoints (white) is
shown.

B. Sample Based Covariance

In order to evaluate the accuracy of the C-LOC pose
we employ the sample based covariance as a performance
metric. The sample based covariance is calculated by ana-
lyzing the pose change, from the initial guess to the final
value during the optimization process. Since the C-LOC
algorithm works on a sliding window approach, a pose is
optimized multiple times during its “life” in the sliding
window. Based on experimental evidence, we implicitly rely
on the assumption that the covariance does not change
significantly over a short period of time since we use past
pose changes to calculate the covariance of the current pose.

More specifically, we compute the covariance by storing
initial non-optimized poses. Every time the sliding window
is shifted, we compare all the poses in the sliding window to
their non-optimized counterpart. Currently, we use a sliding
window of 3 s and shift the window by 1 s every iteration.
This means that every pose is optimized three times before
it is considered fixed. Hence, we calculate the sample based
covariance matrix Q of the current pose based on the
comparison of the last three poses to their non-optimized
counterpart:

Q =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T (1)

where n is the number of pose comparisons, xi is the
difference vector of the i-th non-optimized pose with the
i-th optimized pose and x̄ is the mean of all the difference
vectors. This covariance calculation is used in Fig. 8c to
visualize the varying localization confidence in different parts
of the QCAT site.

C. Current Map Experiments

In June 2016, we mapped the entire QCAT site and created
both a 3D surfel map for localization and a 2D occupancy
grid for navigation. Using four manually set 2D waypoints
consisting of an x, y position and an orientation ψ, a 1161 m
route with a height difference of about 14 m was driven
completely autonomously. The path is represented by the red
line in Fig. 7. Data from ten consecutive runs were recorded
to test the reliability of the system. We set the waypoints once
manually and re-used them for the remaining nine runs to
allow for meaningful path comparison. In order to emphasize
the robustness of the system, the map was created by driving
in the opposite direction to the one later used for localization.

Results: All the ten, consecutive runs were performed
completely autonomously and are shown with their exact
starting date, time and unique color in Fig. 8a. Human inter-
vention during the ten runs consisting of more than 11 km
of driving took only place twice where the operator stopped
the vehicle during 5-10 s to let heavy traffic pass. It can be
seen, that the x, y positions of all the ten trajectories are
very similar. This mainly shows that C-LOC worked reliably,
neither was the algorithm lost at any time nor was there
visible drift in any of the trajectories.

Analyzing the first of the ten runs, the sample based
covariance (IV-B) can be color coded onto the trajectory, see
Fig. 8c. The color coding at a certain time in the trajectory
c(t) is calculated as:

c(t) =
√
qx(t)2 + qy(t)2 t ∈ [0, T ] (2)

where qx is the variance in x direction from the sample based
covariance matrix Q and qy respectively. The end time of the
trajectory is denoted as T . In order to enhance the visibility
in the plot, values are limited to a maximum of 0.01 m.
However, for the statistical analysis presented in Table I
all the ten runs were used without this limit. The C-LOC
algorithm is less certain about the x, y position in yellow
and vice versa in blue trajectory segments. When comparing
this trajectory to the Google Earth image, Fig. 7 it becomes
clear that C-LOC is more certain in areas with buildings
and less in open areas or regions where trees and bushes
are dominant. This is what we expected since localization in
changing bushland regions is more challenging than in areas
with static buildings.

D. Outdated Map Experiments

We show that an outdated base map can be significantly
different to the current map and still allow localization to
work successfully. We perform five consecutive, completely
autonomous loops using a map which was created about
1.5 months before the current map. During this time, trees
and bushes have changed their appearance, cars and barrels
have been moved around.

Results: Using the outdated map, five consecutive, com-
pletely autonomous runs were performed and plotted in
Fig. 8b. During all the runs not a single human intervention
took place. Similar to the ten consecutive runs using the
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Fig. 8. Autonomous driving results using a new and an outdated map. The trajectories are colorized and labelled with their respective date and time. In
addition, the C-LOC variance of the first current map run, is shown using the color coding c(t) with blue, low variance and yellow, high variance.

TABLE I
FOR ALL 15 C-LOC PATHS (TEN WITH THE CURRENT, FIVE WITH THE

OUTDATED MAP), c(t) WAS CALCULATED SEPARATELY AND

SUBSEQUENTLY USED FOR TWO SEPARATE STATISTICAL ANALYSES.

Current map Outdated map
Mean [m] 0.005 0.007

Std. dev. [m] 0.007 0.010
Min. [m] 1.153e-05 1.441e-05
Max. [m] 0.053 0.083

current map, the trajectories of the five runs are nearly
identical, therefore no visible drift occurred and the Gator
never got lost.

In Table I we present the same statistical analysis as in
the current map results, using all the five available runs
performed with the outdated map. When comparing the sta-
tistical analysis of the variances obtained from the outdated
map to the one from the current map, it can be seen that
all the values from the outdated map are higher. This makes
sense, since the outdated map is older, and therefore has
changed more over time than the newer, current map. As a
consequence, localization becomes more challenging and the
variances increase.

E. RTK GPS Comparison Experiments

For comparisons, we use a high precision Novatel OEMV
3G Real-Time Kinematic (RTK) GPS with a GPS-702-GG
Dual-Frequency antenna for ground truth. Using WiFi to
connect to the CSIRO wireless LAN network, the correction
factor from a base station, a Septentrio PolaRx3eG Pro, is
constantly transferred to the Novatel GPS.

Results: We navigated autonomously while recording both
the C-LOC and a high precision RTK GPS trajectory. Since
the C-LOC and the RTK GPS trajectories were in different
frames, we used an affine transformation to align them (see
Fig. 9a). As expected the RTK GPS performs badly at the
beginning of the trajectory where large buildings are located.
Everywhere else, the GPS seems to perform well and can be
used as reliable ground truth. Figure 9a indicates that the
trajectory reported by C-LOC aligns very well with the one
reported by the RTK GPS.

To quantify the difference of the C-LOC path to the
RTK GPS path we used the Euclidean norm: e(t) =√
ex(t)2 + ey(t)2 with ex(t) = x(t)RTK − x(t)CLOC . In

Fig. 9b the Euclidean norm e(t) is color coded onto the
C-LOC trajectory. The trajectories were only compared in
areas where the RTK GPS performed well and hence a
part of the trajectory is missing. The minimum of the
Euclidean norm is 0.096 m, the maximum 2.004 m and the
mean 0.995 m. It is worth mentioning that those values can be
considered an upper bound of the actual difference between
the C-LOC and the RTK GPS path. This is due to the fact
that during comparison small errors were introduced. First,
the two paths were aligned using an affine transformation.
Second, both the RTK GPS and the C-LOC path were
linearly interpolated for comparison.

In addition, the RTK GPS path was plotted on a Google
Earth image (see Fig. 9c) using the online GPS Visualizer4.
The RTK GPS trajectory seems to align well with the streets
of the QCAT site. Taking into account all the performed
RTK GPS comparison experiments, we can conclude that
the trajectory reported by the localization pipeline C-LOC
accurately represents the real world trajectory.

F. Additional Runs

In addition to the well-defined and repeatable experiments
described above, a longer route of 1310 m was driven com-
pletely autonomously dozens of times for testing purposes
and to demonstrate the working system to both CSIRO
internal and external people. This longer loop was also
used to create a video5. It includes navigation through an
additional loop and intersection within the site. Once the
base system was set, no navigation or localization failures
were observed in any of the runs.

V. CONCLUSIONS

So far, more than 60 km of autonomous driving around the
QCAT site has been performed using the novel navigation
stack presented in this paper, without experiencing a single
system failure. This provides evidence that the system works

4http://www.gpsvisualizer.com
5https://youtu.be/nFGYMIXhqF4

http://www.gpsvisualizer.com
https://youtu.be/nFGYMIXhqF4
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Fig. 9. Comparison of the C-LOC path to the RTK-GPS path.

reliably in a dynamic and arguably challenging environment.
By presenting experiments with both a new and an outdated
base map, it was shown that even though the base map is
highly accurate, it is not crucial for successful localization
and navigation. Changes in the map such as moving cars,
barrels or also vegetation change can be tolerated without
causing the system to fail. Finally, the performed RTK GPS
experiments have successfully shown that the path reported
by the localization system C-LOC corresponds to the actually
driven one in the real world.

ACKNOWLEDGMENTS

We would like to thank Kazys Stepanas for helping with
the creation of the 2D occupancy grid, Dave Haddon for
his support regarding the Gator, Ross Dungavell for his
assistance with the RTK-GPS, Brett Wood for designing the
timing board and Robert Zlot for his corrections in the paper.

REFERENCES

[1] A. Broggi, P. Medici, P. Zani, A. Coati, and M. Panciroli, “Au-
tonomous vehicles control in the vislab intercontinental autonomous
challenge,” Annual Reviews in Control, vol. 36, no. 1, pp. 161–171,
2012.

[2] A. M. Kessler, “Elon musk says self-driving tesla cars will be in the
us by summer,” The New York Times, p. B1, 2015.

[3] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spin-
ning 2d laser,” in Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, pp. 4312–4319, May 2009.

[4] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of a spring-
mounted 3-d range sensor with application to mobile mapping,” IEEE
Transactions on Robotics, vol. 28, pp. 1104–1119, Oct 2012.

[5] R. Zlot, M. Bosse, K. Greenop, Z. Jarzab, E. Juckes, and J. Roberts,
“Efficiently capturing large, complex cultural heritage sites with a
handheld mobile 3d laser mapping system,” Journal of Cultural
Heritage, vol. 15, no. 6, pp. 670–678, 2014.

[6] R. Zlot and M. Bosse, “Efficient large-scale three-dimensional mobile
mapping for underground mines,” Journal of Field Robotics, vol. 31,
no. 5, pp. 758–779, 2014.

[7] M. Bosse and R. Zlot, “Place recognition using regional point descrip-
tors for 3d mapping,” in Field and Service Robotics, pp. 195–204,
Springer, 2010.

[8] M. Bosse and R. Zlot, “Place recognition using keypoint voting in
large 3d lidar datasets,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on, pp. 2677–2684, IEEE, 2013.

[9] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Robotics: Science and Systems Conference (RSS), pp. 109–
111, 2014.

[10] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-
drift, robust, and fast,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2174–2181, IEEE, 2015.

[11] M. Beul, N. Krombach, Y. Zhong, D. Droeschel, M. Nieuwenhuisen,
and S. Behnke, “A high-performance mav for autonomous navigation
in complex 3d environments,” in Unmanned Aircraft Systems (ICUAS),
2015 International Conference on, pp. 1241–1250, IEEE, 2015.

[12] D. M. Cole and P. M. Newman, “Using laser range data for 3d slam
in outdoor environments,” in Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006., pp. 1556–
1563, IEEE, 2006.
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