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Abstract— Efficient estimation of obstacles is a crucial com-
ponent in autonomous vehicle navigation. Fusing stereo vision
and laser scan data is a widely used approach for obstacle
detection and navigation. Stereo vision can detect obstacles and
the ground. Planar laser range finders can detect obstacles, but
false positives occur when the scans collide with the ground.
This paper proposes an algorithm for cooperative fusion of
stereo vision and laser data. The algorithm checks the consensus
of the two signals before filtering out the false positive laser
scans from ground hits. Experimental results for tests in real
driving situations in an industrial environment are presented.
The results confirm the effectiveness of the proposed algorithm
for robust and safe navigation.

Index Terms— Sensor Fusion, Laser Range Finder, Stereo
Vision, Obstacle Detection

I. INTRODUCTION
In the context of autonomous driving, perceiving and

understanding the environment surrounding a vehicle is
essential. Given that all sensors have their advantages and
drawbacks, a single sensor is often not sufficient to accurately
represent the environment and the use of multiple sensors
on vehicles has become a common alternative. Laser range
finders and stereo vision are an often used combination as
the sensor modalities complement each other: 2D laser range
finders allow high precision and high frequency measure-
ments, but they only provide information about the environ-
ment in the scanning plane. On the other hand, stereo vision
provides dense 3D structural data and texture information. Its
drawbacks are the limited field of view, the limited reliable
range and the low frequency. In particular, the precision
and noisiness of range measurements vary with the lightning
conditions and the texture of the environment.

In this paper, a method for filtering out false positive
obstacles from laser scans colliding with the ground is
presented, using a laser-vision fusion (LVF) framework. The
challenge of cooperative fusion is tackled using stereo vision
and planar laser range finders. The stereo vision data is
processed into a digital elevation model (DEM) which is
then used to estimate a ground plane.

A. Related Work
A significant amount of literature can be found on sensor

fusion of laser and stereo vision data. The fusion applications
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Fig. 1. View of the proposed laser-vision fusion algorithm. The ground
plane (green polygon) is estimated from ground points (white). The red
points represent the filtered out laser readings, which are false positive
obstacles, and the true obstacles are represented by the orange points.

reach fields such as obstacle avoidance, path planning, lo-
calization, mapping and SLAM. In early works, the methods
were not cooperative [1]. The visual data was simply utilized
to validate the correctness of the laser range measurements.
Moghadam et al. [2] apply sensor fusion for path planning
and mapping. The fusion is cooperative, but only on a distinct
level: for each sensor a costmap is generated and these
costmaps are fused into an occupancy grid [3]. The method
works in real-time in complex and cluttered indoor and
outdoor environments. Haberjahn et al. [4] propose a multi-
level fusion framework in which the sensor data is merged
on three levels: on low-level using points, on mid-level using
objects and on high-level using tracks. The framework was
tested for laser range and stereo vision sensors, but the
method is independent of the number and type of sensors,
as long as the data and error models can be provided.
Conflicting sensor statements are solved with competing
object information in order to get a more accurate object
determination. The method also overcomes the methodology
of using one sensor as main sensor determining the object
hypotheses and another sensor only for verification [1], [5].

Dense 3D point clouds from stereo vision are generally
computationally heavy to process. A convenient approach
is to downsample the stereo points into a digital elevation
model (DEM). Oniga et al. [6] use a DEM to derive a
quadratic ground model. The ground model considers the
3D uncertainty from stereo and is refined using a region
growing process. Density-based and road surface-based al-
gorithms detect obstacles. The complete framework allows



to discriminate between roads, traffic isles and obstacles.
Although the ground usually presents some degree of

curvature, a linear model for the ground plane estimation
can be assumed. This is a simplification commonly used
in literature [7], [8] and has the advantage of lowering the
complexity of the algorithm and decreasing its computational
costs.

A specific challenge in fusing laser and visual data is
to detect laser scans colliding with the ground. If this is
not done thoroughly, false positive obstacles remain on the
vehicle’s path which hinders efficient navigation. In practice,
false positives can occur when laser scans hit the ground due
to the pitching of the vehicle or the sloped ground geometry
as illustrated in Figure 2. In that case, the laser points
should not be considered as obstacles. Using competitive
sensor information, a fusion framework is able to solve
contradictory statements in obstacle detection.

laser
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stereo vison

Fig. 2. False positive obstacle detection from laser scans at slopes.

In the context of the DARPA Urban Challenge [9], a
framework for an autonomous urban vehicle is presented
[10] using planar laser range finders and a Velodyne sensor.
One of the challenges is distinguishing obstacles and ground.
Using a polar grid around the vehicle, the ground height
of each cell is calculated from the infalling Velodyne laser
points. These cells are subject to a ground-slope constraint
in order to avoid elevated obstacles to be detected as ground.
Obstacles are defined as laser points lying a certain threshold
above the ground and need to be confirmed by multiple laser
hits from one or more laser range finders. The procedure for
tuning this threshold is not elaborated. Labayrade et al. [11]
set up an obstacle detection framework in the automotive
context by fusing laser and stereo vision data. The authors
use a cooperative fusion approach which takes into account
the complementary features of both sensors. The set of
obstacles from vision and laser scans are matched. Width
and depth of obstacles are provided by laser measurements,
whereas the stereo vision provides the height. Several cooper-
ative fusion schemes of stereo vision and laser range finders
are discussed and one is implemented and tested. The vehicle
pitch, estimated by stereo vision, is used to filter laser scan
data such that the laser points colliding with the ground are
removed. Unfortunately, this filtering step is not discussed in
detail.

As examined by the authors of a multi-level fusion frame-
work [4], low-level fusion contributes greatly to the accuracy
of object detection. Accordingly, refining the low-level fusion
techniques impacts the whole obstacle detection process the
most.

B. Contribution of this Work

In this paper, a method for filtering out false positive
obstacles from laser scans colliding with the ground is pre-
sented. Scans from planar laser range finders are combined
with data from stereo vision to form the LVF algorithm.
In our implementation, the lasers and cameras are mounted
on the front of an autonomous electric vehicle, pointing
forward. The stereo vision data is processed into a DEM
which is then used to estimate a ground plane. The pre-
sented method checks the reliability of the laser and stereo
vision data by evaluating the consensus of the signals. The
method allows for accurate and fast distinction between
actual obstacles and false positives assisting towards safe
navigation of autonomous vehicles. The method works in
real-time in complex and cluttered outdoor environments.
In addition to the implementation, this contribution also
presents an analysis of the proposed consensus metric in
the presence of noise. The analysis provides deeper insight
into the signal properties and motivates the tuning of the
algorithm parameters.

The paper is organized as follows. Section II presents the
algorithm of the ground plane estimation using stereo vision
data as input. Section III presents the proposed sensor fusion
algorithm explaining the sensor consensus validation and
the false positives filtering. Section IV presents a statistical
analysis of the signal used in the sensor fusion algorithm.
Section V presents practical considerations, experiments and
results of the fusion scheme. Finally, conclusions and future
work are discussed in Section VI.

II. GROUND PLANE ESTIMATION

As a first step to the LVF, an estimate of the ground is
necessary. The point cloud from stereo vision is split into
ground and non-ground points. The ground points are used
to estimate a ground plane.

The coordinate system used in this section has its origin
laterally centered in front of the vehicle. The x-axis is point-
ing left, the y-axis is pointing up and the z-axis is pointing
towards the front in the driving direction, as illustrated in
Figure 4.

A. DEM and Ground Points

A dense 3D point cloud from stereo vision is taken as
input and downsampled by building a rectangular DEM. The
height hcell of a DEM cell is defined by the maximum height
of all points lying within the cell.

From the DEM cells, we extract the subgroup of ground
cells. The first ninitial DEM rows in front of the robot are
initialized as ground cells. The remaining cells are tested
according to the following criteria:

• a DEM cell is compared with the cells in a search
triangle (see Figure 3).

• For each of those cells, the slope gradient � is calcu-
lated.

• If the majority of the slope gradients lies below a
gradient threshold �

�

, the cell is accepted as ground.



The threshold �

�

and the size of the search triangle must be
selected such that the ground points are correctly detected
in case of a tilted vehicle, inclined roads and sensor noise.
An example of the raw 3D data from stereo vision and the
resulting DEM cells is shown in Figure 3.

(a) Unprocessed 3D point cloud from stereo vision (blue)

(b) DEM Ground cells (white) and obstacles (red)

Fig. 3. (a): The 3D points from stereo vision for a typical scene of a road
with a pedestrian and obstacles at the side of the road. (b): After building
a DEM and applying ground and obstacle detection. The search triangle
(blue) for a DEM ground cell (orange).

B. Ground Plane Coefficients
The ground DEM cells are fed as input points to the

ground plane estimation algorithm based on the random
sampling consensus (RANSAC) method [12]. The algorithm
specifies an upper limit ↵max for the angle between the y-axis
and the output plane normal in order to avoid detecting walls
as solution. The output of the algorithm are the coefficients
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of the ground plane equation
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An upper limit d
⌃,max for the fourth ground plane coefficient

is set for the plane estimation to avoid having elevated
horizontal planes as a solution.

III. SENSOR FUSION

In the proposed LVF algorithm, a selection of laser points
and the ground plane estimate are tested for consensus. Given
the consensus, the filtering of the selected laser points is
applied.

A. Selection of Laser Points Relevant for Filtering
In order to navigate on clear paths, the LVF is applied

when laser points hit the ground in front of the vehicle. The
front is defined by the field of view of the stereo sensor. Laser

points lying outside of the front do not need to be included
into the filtering process as they do not lie in the driving
direction and the ground plane estimation is not available
at their positions. Laser points hit the ground due to the
dynamic pitching of the vehicle or due to the geometry of
the road (slopes, bends or dents) as illustrated in Figure 2.

All laser points lie on a plane. The position p(i) of a laser
point with spatial index i is described by its polar coordinates
which are angle '(i) and distance ⇢(i) from the source of
the laser range finder to the point of impact.

We set a maximum allowed angle 'max to select the
relevant laser points. 'max depends on the parameter wpath,
which is the width of the path to be considered for filtering.
The maximum allowed angle 'max is approximated by

'
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= arctan

⇣
wpath

2D

⌘
(2)
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where D is the horizontal distance from the laser range finder
to the ground, ✓

⌃

= cot

�1

(�b

⌃

/c

⌃

) is the pitch angle of
the ground plane estimation and hlaser is the mounting height
of the laser range finder. The geometry leading to (2) and
(3) is visualized in Figure 4 for the case d

⌃

= 0.

⌃

x

y

z

D

✓

⌃

(a) side view

x

y

z

D

wpath

road
offroad

'max

(b) top view

Fig. 4. The estimated ground plane ⌃ (solid line), impinging laser scans
(dashed lines) and the width of the path wpath (solid line) considered for
filtering.

B. Sensor Consensus

For each laser point classified as relevant, the signed
Euclidean distance d(i) to the estimated ground plane ⌃ is
calculated. The distance is positive if the laser point lies
between the laser sensor source and the plane. For a point
at position p(i) = (p

x

(i), p

y

(i), p

z

(i)), the distance d(i) is



defined as
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The consensus metric M is

M =

1

N

NX

i=1

d(i) (5)

where N is the number of laser points considered relevant
as explained in Section III-A.

The measurements of d(i) are prone to noise from both
sensors and the ground plane estimate is not necessarily
precise. The correctness of the measurements is validated by
checking the sensor consensus which is given if M < �

M

,
where �

M

is the metric threhsold.

C. Laser Points Filtering
In case of sensor consensus, the laser points are filtered

in order to remove the collision points with the ground. The
filter is only applied to the laser points for which d(i) < �

d

.
The parameter �

d

is the threshold for the distance d applied
in the filtering step, whereas �

M

is the threshold for the
metric M applied in the sensor consensus step. Note that
d(i) is a signed distance and therefore all laser points with
negative distances (lying on the side of the plane away from
the laser) are discarded.

Filtering out obstacle points allows detecting clear paths,
but also affects the reliability of the vehicle navigation.
In particular, filtering out obstacles close to the vehicle in
the driving direction can be hazardous. So far, the minimal
distance Dmin between a filtered obstacle and the origin of
the laser range finder is limited by the parameters ↵max (the
allowed tilting angle of the estimated ground plane) and
d

⌃,max (the maximal fourth ground plane parameter). The
relation between these parameters is expressed according to

Dmin =

cos(↵max)hlaser � d

⌃,max � �

d

sin(↵max)
(6)

This formula was derived in the same manner as (3). If a
laser point lies closer than a safety distance Dsafety to the
vehicle, the point is not filtered out by the LVF algorithm. To
be able to brake before hitting a static obstacle, the distance
Dsafety has to be chosen larger than the total stopping distance
Dstop. An expression of Dstop can be found using the law of
conservation of energy [13]. The vehicle’s kinetic energy is
set equal to the work done by braking which leads to

Dstop = vvehtreact +
v

2

veh
2µfricg

(7)

where vveh is the vehicle’s velocity at the the start of
braking, treact is the perception-reaction time, µfric is the
coefficient of friction between the road surface and the tires
and g is the acceleration of gravity. In the experiments in
this paper, a formula of type Dstop = avveh + bv

2

veh with
empirical parameters a, b has been applied to calculate the
total stopping distance.

IV. STATISTICAL SIGNAL ANALYSIS

In Section III, we discussed how the distance metric d

from a laser point to the estimated ground plane is calcu-
lated. In this section, a statistical analysis on this signal is
presented providing a better understanding of the metric. The
theoretical probability of a false positive obstacle detection
is derived aiding in the process of tuning the parameters of
the sensor consensus and the laser point filtering.

The notation µ

z

stands for the temporal statistical mean
and �

2

z

stands for the temporal statistical variance of a
function z(i, t) with spatial index i = 1...N at time t. The
expected values E[.] discussed in the following are with
respect to t.

A. Measurements Model

We model the measured distance d(i, t) as composed
of a constant term c representing the “noise-free” distance
and a zero-mean additive white Gaussian noise (AWGN)
term ⌘(i, t). In practice, ⌘(i, t) is correlated over space
and this correlation is modeled by a low-pass filter h(i).
The autocorrelation function of the signal is illustrated in
Figure 6. Based on these assumptions, d(i, t) is written as

d(i, t) = c+ ⌘

h

(i, t) (8)

with ⌘

h

(i, t) = h(i) ⇤ ⌘(i, t). Because µ

⌘

= 0, µ
d

(i) = µ

c

.
In addition, �

d

(i) = �

⌘h(i).

B. Statistics of the Metric

Inserting (8) into (5), the theoretical mean value of the
metric M is

µ

M

= E[M(t)] =
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Because ⌘ is zero-mean, E[⌘

h

(i, t)] = 0. Therefore,
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Ideally, c = 0 on an obstacle-free road. In practice, however,
the precision of the sensors is limited, the transformation
estimate between the stereo cameras and the laser range
finder is not exact and the ground plane estimation is only an
approximation of the real ground. The theoretical variance
of the metric is
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2

M
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Inserting (10) into (11) and (8) into (5) leads to
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Since ⌘

h

(i) is zero-mean and is not correlated to c, the
expected value E[c ⌘

h

(j, t)] = 0. Rewriting,
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Given that the autocorrelation r

x

of a signal x in random
processes is defined as r

x

= E[x(i)x(j)] [14], (13) can be
written as
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r
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In the Appendix, we show that r
⌘h(j) = �
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r

h

(j). Therefore,
the variance of M can be written as
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where r

h

is the autocorrelation function of the impulse
response of filter h.

C. Probabilities of False Positive Obstacle Detections

Once µ

M

and �

2

M

are determined, it is possible to estimate
the probability of a false positive obstacle detection based
on the model assumptions. This is particularly relevant
to estimate how the threshold of metric M impacts the
performance of the algorithm. For this task, we employ
the Q-function Q(�

x

), the complement of the cumulative
distribution function �(�

x

) for a Gaussian random variable
x with mean µ

x

and variance �

2

x

. The Q-function is an
expression for the probability that the Gaussian random
variable x will obtain a value larger than �

x

. It is defined as
[15]

Q(�

x

) = 1� �(�

x

) =

1

2

erfc

 
�

x

� µ

xp
2�

2

x

!
(16)

where erfc is the complementary error function [16]. Using
the Q-function, an expression for the theoretical probability
of a false positive obstacle detection at a distance threshold
�

M

is derived. In other words, this probability is the rate
at which the metric M exceeds a threshold �

M

. This
probability is denoted as Ptheo(�M

) and is defined as

Ptheo(�M

) =
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To validate this formula, we present simulation and real
experimental results in the next section.

V. EXPERIMENTS

In this section, the results of the experimental evaluation
of the fusion algorithm and the statistical signal analysis are
presented.

A. Practical Considerations
The algorithm is implemented in C++ and runs on the

Robotics Operating System (ROS) [17]. The Point Cloud
Library [18] was used to implement the RANSAC ground
plane estimation.

For the lasers, two Hokuyo range sensors were used. The
sensors were placed on the left and on the right in the front
of the vehicle, both mounted at height hlaser ⇡ 0.79 m. The
signals of the laser scanners were fused to create a single
laser scan signal with a sensor origin centered in the front
of the vehicle as depicted in Figure 4. For this virtual sensor
origin, the derived formulae for 'max and D in Section III
represent good approximations. The laser scanners have an
angular resolution of 0.25

� and a scan angle of 270

�. The
laser scanners were running at a frequency of 30Hz and have
a maximum detection distance of 30m. The stereo vision
sensor was composed of two monochromatic Point Grey
Grasshopper cameras holding a 2/3” CCD imaging sensor
fitted with Kowa lenses of 5mm focal length and aperture
F1.8. The resolution was set to 800⇥600 pixels running at a
frame rate of 15Hz. The system was mounted at a height of
1.0m on a rig with a baseline of 25 cm as illustrated in Figure
5. The sensors were mounted on a John Deere Gator, an
electric medium size utility vehicle (see Figure 5), and driven
in unstructured and structured industrial environments. The

Fig. 5. The test vehicle, a John Deere Gator holding multiple sensors of
which the two laser range finders (red boxes) and the stereo vision sensor
(blue box) were used.

computations were executed on an Intel Core i7 quadcore
processor running at 2.7GHz. The average computational
time was 20ms for the DEM and the ground point extraction,
less than 1ms for the ground plane estimation and less than
1ms for the sensor fusion. The sensor fusion node operated
at 15Hz.

In our implementation, the upper limit for the angle
between the y-axis and the plane normal is ↵max = 0.52 rad,
the upper limit for the fourth ground plane coefficient is
d

⌃,max = 0.6m, the width of the path is wpath = 5m and
the parameters for the total stopping distance equation are
a = 1.2 s and b = 0.25 s2/m. The filter h was designed as
finite impulse response (FIR) filter approximated by

h(i) =

1

11

10X

k=0

�(i� k) (18)



The autocorrelation over space of the signal d(i) is shown in
Figure 6. The low-pass characteristic of this signal has been
handled by using a low-pass filtered noise model.
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Fig. 6. The sample autocorrelation function of the signal d(i) with spatial
index i.

B. Threshold Experiments
An obstacle-free road was used as a testing environment

for an initial validation of the statistical signal analysis.
The vehicle was driven in areas where the laser scans were
constantly hitting the ground. Extensive test data has been
gathered for this scenario and the probabilities Ptheo of
M exceeding a threshold �

M

have been calculated. The
results are illustrated in Figure 7. The theoretical curve is
a plot of (17). The simulation results were generated using
a random variable with mean µ

M

and variance �

2

M

. The
overlay of the theoretical curve (depicted as solid line) and
the simulation results (represented by crosses) illustrates the
validity of the statistical signal analysis. The experiment data
(represented by circles) does not correspond to the simulation
data for larger thresholds. This discrepancy occurs since
the probabilities of M exceeding large thresholds are small.
For those small probabilities, the experimetally determined
values do not approximate the expected values well.
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Fig. 7. Probabilities of M exceeding a threshold as a function of the
threshold. Displayed are the curve from the theoretical analysis, a simulation
and an experiment based on real data.

The tuning of the thresholds of the laser filter algorithm
was based on datasets with obstacles on the road. The metric

threshold was set to �

M

= 0.35m and the distance threshold
was set to �

d

= 0.20m.

C. Closed-Loop Implementation on an Autonomous Vehicle

The sensor fusion system was implemented on an au-
tonomous vehicle to allow closed-loop test runs. These tests
display the ability and effectiveness of the algorithm to assist
in autonomous navigation. The Gator was used as the test
platform, with the sensor setup and parameter settings as
described in Section V-A. The vehicle has been automated by
our group at CSIRO1 and the tests have been run on our site
at QCAT2, a large industrial park in Australia. The navigation
of the vehicle is done by the ROS Navigation Stack [17]
which can load a predefined laser-generated map and can
localize the vehicle in this map using the laser scanners. The
navigation stack runs a costmap which is constantly updated
with the obstacles detected by the laser range finders. The
costmap is the basis for planning paths.

The performance of the algorithm is evaluated in different
areas. In all of them, the vehicle is given a goal approxi-
mately 50m away from its initial position. The vehicle plans
a path and starts to drive autonomously along a road towards
the goal. On the road to the goal, the vehicle reaches a slope
which causes the laser scans to hit the ground in front of
the vehicle, as illustrated in Figure 2. We consider three
scenarios, which evaluate 1) the case of not using any laser
scan filtering, 2) the performance of the laser scan filtering
in case of an obstacle-free road and 3) the performance of
the laser scan filtering in case of obstacles on the road.

1) No Laser Filtering: This scenario covers the case
where the proposed laser filtering algorithm is not applied.
This situation is illustrated in Figure 8. When the vehicle
reaches the slope, the laser scans hit the ground. This leads
to the costmap containing false positive obstacles which
interfere with the path planning of the vehicle. The vehicle
tries to replan the path, but finds no solution to follow the
road without hitting the false positive obstacles, and the
vehicle is stalled. 25 tests in different locations were run
in this scenario. In all of them, the vehicle was to drive past
the slope and complete the mission.

2) Laser Filtering on Obstacle-free Road: We consider
the same environment as above, but in this scenario the
laser filtering module is active. As the vehicle approaches
the slope, the laser filtering algorithm removes laser scans
before passing them to the navigation module.

For this scenario, a total of 25 runs on different locations
have been made. In all of them, the vehicle reached the
goal. The false positive obstacles of the previous scenario
that stalled the navigation are now successfully removed by
the laser filter.

3) Laser Filtering with Obstacles on the Road: This
scenario contains an obstacle on the sloped road which the
vehicle has to pass to reach the goal. The vehicle cannot
sense the obstacle at the beginning of the run and plans a

1The Commonwealth Scientific and Industrial Research Organisation.
2Queensland Centre for Advanced Technologies.



(a) Left camera view

(b) Top-down costmap view

Fig. 8. Navigation failure due to false positive obstacle detection from the
laser scans (red) hitting the ground. The costmap contains obstacles (green)
which are false positives hindering path planning through the clear road.

path through the location of the obstacle. While approaching
the slope, the laser scans hit both the ground (false positive
obstacle) and the actual obstacle (true positive obstacle). In
order to reach the goal, the vehicle must filter out the false
positive obstacles while keeping the real obstacle.

The performance of the algorithm was evaluated by mea-
suring (i) how often the obstacle on the road was detected,
(ii) how often a collision with the obstacle was avoided by
either driving around it or stopping before hitting it, as well
as (iii) how often the goal was reached. The used obstacles
were cones, poles as well as static and moving pedestrians.
The height of the obstacles lay between 0.3m and 1.8m.
Roads with different ground geometries were used for the test
runs. The results of this scenario are shown in Table I, which
displays the the three performance criteria mentioned above.
Snapshots of the running algorithm are given in Figures 1
and 9, with both images displaying different views of the
same scene.

TABLE I
PERFORMANCE RESULTS FOR THE LASER FILTERING IN A SCENARIO

WITH OBSTACLES.

Number of Runs 25

Detected true positive 96%

Avoided true positive 96%

Goal reached 92%

In one test, the algorithm failed to detect and avoid the
obstacle. In this run, the road had a strong curvature and
the obstacle was a cone of height 0.3m. The low height of

the obstacle, its position and the imprecision of the ground
estimate caused the obstacle to be filtered out.

The laser filtering allows for false positives obstacles to be
filtered out from noisy measurements, but it can also remove
true positives if their height lies below the threshold �

d

.
Therefore, the obstacles used in the experiment had heights
larger than this threshold. As mentioned, removal of true
positive obstacles with height larger than �

d

can occur, but
becomes less probable with increasing height.

The vehicle did not reach the goal in two different runs.
In one run, the vehicle stopped close to the obstacle which
caused the replaning of the path to fail. This failure is not
related to the performance of the laser filtering algorithm.
In the other run which did not reach the goal, the reason
for failure was the incomplete removal of false positive
obstacles. After filtering, false negative obstacles remained
at the side of the road. The cleared path was too narrow
for the vehicle to pass which caused the vehicle to stop in
front of the false positive obstacles. The amount of removed
false positives is related to the accuracy of the ground plane
estimate representing the ground.

Fig. 9. The laser filtering sensor fusion algorithm. Estimated ground plane
(green polygon) from ground points (white). The filtered out laser points
(red) which are false positive obstacles and the remaining points (orange).

VI. CONCLUSIONS AND FUTURE WORK

A method for handling laser scans hitting the ground
has been presented. The method is simple and efficient in
computational resources. The method was implemented and
tested on an autonomous vehicle on closed-loop experiments.
The results show that thanks to the laser filtering, clear
paths could be detected. The tuning of threshold parameters
was motivated by a statistical signal analysis. However,
the performance is limited by the accuracy of inter- and
intrasensor calibration and by the used models, such as the
ground plane estimation.

In future work, the ground plane model could be replaced
by either a quadratic ground model or by a set of planar
ground segments. This would allow the system to perform
better on strongly curved roads. Alternatively, the distance
between a laser point and its closest DEM ground cell could
be used as distance measurement. No model assumption
would be requried for this approach, but the DEM ground



point selection might need to be refined. These suggested
alternative methods are easy to implement, but may rise
the computational costs of the algorithm. Additional future
work includes improving the sensor consensus evaluation.
This could be done by defining new metrics for the sensor
consensus and comparing them with the one used in this
work.

APPENDIX

A linear time-invariant system ⌘

h

is set up using the
convolution summation of a low-pass filter h and unfiltered
AWGN ⌘ according to

⌘

h

(i, t) =

1X

k=�1
h(k)⌘(i� k, t) (19)

For a more compact notation, from here until the end of
this section, the temporal index t will be dropped from the
notation. Multiplying both sides by the complex conjugate
⌘

⇤
h

(i� l) and taking the expectation leads to

E[⌘

h

(i)⌘

⇤
h

(i� l)] =

1X

k=�1
h(k)E[⌘(i� k)⌘

⇤
h

(i� l)] (20)

The equation is rewritten by using the notation r

x

for the
autocorrleation of a signal x and r

xy

for the cross-correlation
of signals x, y.

r

⌘h(l) =

1X

k=�1
h(k)r

⌘⌘h(l � k)

= h(l) ⇤ r
⌘⌘h(l) (21)

Using the property r

⌘⌘h(l) = h

⇤
(�l) ⇤ r

⌘

(l) [14], this can
be rewritten to

r

⌘h(l) = r

h

(l) ⇤ r
⌘

(l)

=

1X

m=�1
r

h

(l �m)r

⌘

(m) (22)

The autocorrelation of the noise ⌘ corresponds to

r

⌘

(m) =

1X

k=�1
⌘(k)⌘

⇤
(k �m)

=

(
�

2

⌘

, if m = 0

0, otherwise
(23)

Inserting this into (22) leads to

r

⌘h(l) = �

2

⌘

r

h

(l) (24)
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