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Abstract

We explore a teach and repeat approach using
sensor-fusion for the detection of traversable ar-
eas, with application to autonomous vehicles.
The method is suitable for vehicles which op-
erate in a known environment, as is the case
in many practical scenarios. By comparing
a human-driven trajectory with the trajectory
that would have been followed when using each
sensor configuration, it is possible to automati-
cally evaluate the performance of different sen-
sors in different regions of the site. Thus, it is
possible to define, for each region, what is the
optimal sensor configuration as learnt from pre-
vious experience. Experiments are performed
on a ground robot platform equipped with 2D
laser sensors and a monocular camera with road
detection capabilities. The results illustrate an
increase in performance through a reduction of
the failure rate along the trained route.

1 Introduction

Consider the industrial area depicted in Figure 1. The
paths highlighted in green represent operation paths
where an autonomous vehicle is to navigate on a daily
basis to assist in a given task. To operate reliably in
such an environment, most modern autonomous vehicle
implementations use more than one sensing modality.
Popular sensors include cameras, lasers, global position-
ing system (GPS), inertial measurement units (IMUs),
among others. The use of multiple modalities is very
effective where the reliability of sensors vary. This is
the case in the different regions of Figure 1. From the
image, it is clear that different parts of the site contain
significantly distinct structural characteristics. The cen-
tral path, for example, runs through a densely built up
area, with buildings and large metal sheds. In contrast,
other roads go through vegetation and unstructured ar-
eas, connecting the main buildings to other storage sheds
and loading zones.

Figure 1: Satellite view illustrating a heterogeneous op-
eration space. The scale is 410× 360 meters.

In this challenging scenario, intelligent sensor fusion is
essential to ensure dependable operation. In this paper
we propose an informed sensor fusion strategy that con-
siders knowledge of the environment, applicable to cases
where the vehicle must operate in known areas.

By working under the assumption that the map is
known, sensor performance can be mapped throughout
the working area by analysing the behaviour of each sen-
sor configuration on previous runs through the environ-
ment. Therefore, this approach chooses a sensor configu-
ration based on their measured performance on practical
tests without relying on rigid statistical models.

In many practical situations an autonomous vehicle is
required to travel along a particular trajectory repeat-
edly. By manually driving the vehicle along specified



operation routes, it is possible to map its sensors’ be-
haviours and understand where a particular sensor might
show a low performance or even fail. By having a human
driver demonstrating the desired response of the system
it is also possible to stimulate the vehicle into mimicking
the behaviour of the human driver. This can be achieved
by selecting the configuration of inputs that produces
outputs that better resemble those of the human oper-
ator. Therefore, by understanding the environment and
its effect on the sensors, an autonomous vehicle can give
different priorities to its inputs based on experience.

The proposed algorithm is evaluated on an test plat-
form equipped with 2D lasers and a monocular camera
with road detection capabilities. The vehicle is driven
in an environment with different regions where the opti-
mal sensor configuration changes. It is shown how, after
analysing several manually driven runs, it is possible to
automatically change the combination of sensors to im-
prove the performance of the trajectory planning capa-
bilities of the vehicle. Using as a metric of performance
the resemblance to the human-driven trajectory.

1.1 Related work

The current paradigm in robotics involves a probabilis-
tic modelling of the vehicle’s state [Thrun, 2000]. Sen-
sor fusion is then accomplished through the combination
of information based on the probability distribution of
each sensor’s measurements. Different implementations
of the Bayes Theorem such as Bayesian networks [Rus-
sell and Norvig, 2003], as well as linear approximations
of them as the Kalman Filter [Maybeck, 1990], or Se-
quential Monte Carlo methods such as the Particle Fil-
ter [Doucet et al., 2001; Thrun, 2002] are built upon the
knowledge of the expected uncertainty of each sensor’s
information. This probabilistic models are difficult to
obtain and may also be variable as different situations
(e.g. different environments) are faced. This leads to
situations where the system may be incorrect and yet
confident about a certain measurement.

For the case of known trajectories and environments,
various teach and repeat strategies have been developed
for robot localization and control [Kidono et al., 2002;
Tang and Yuta, 2001; Ohno et al., 1996]. Long-range
rover autonomy has been achieved by using only a stereo
camera pair [Furgale and Barfoot, 2010]. A similar
method was used with an appearance-based LIDAR [Mc-
Manus et al., 2012] in order to obtain illumination invari-
ance.

As for traversable-area detection, there is a large
amount of literature available that describes the use of
different sensors and algorithms that can detect roads
and obstacles in either structured or unstructured envi-
ronments (see [Bar Hillel et al., 2014] for a comprehen-
sive analysis of the state of the art).

This work presents a method for measuring the per-
formance of a sensor fusion configuration for traversable-
area detection based on the teach and repeat paradigm.
This allows the system to tune the sensor configuration
while trying to optimize the performance. A mapping
can then be done from each region in the map to the
optimal sensor modality.

2 Environment-aware sensor-fusion

This section describes the infusion of environment-
awareness through sensor fusion.

2.1 Performance measure

The performance of a sensor configuration can be mea-
sured through the similarity between the behaviour of
the vehicle while using that specific configuration and
the behaviour followed when it is manually driven. In
the case of traversable-area detection the system is ex-
pected to react to the obstacles around it in a similar
fashion as a human driver. In this work we propose the
use of a simulation of the vehicle’s behaviour (i.e. an es-
timation of the trajectory that would have been followed)
and a comparison with the manually driven trajectory to
quantify the capabilities of each sensor configuration. A
path planner that builds a trajectory based on the ob-
stacles detected by the sensors could be used as such
simulation.

Figure 2 illustrates the concept. While being
manually-driven, the vehicle follows the red trajectory,
a straight line. Meanwhile, for a specific sensor config-
uration the vehicle detects the obstacles represented by
the shapes coloured in dark blue. At the beginning of
the trajectory the vehicle detects the left-most obstacle,
which is a false obstacle (i.e. the sensors incorrectly as-
sume that there is something in front of the vehicle). The
path planner would then generate a trajectory around
it, depicted as a black arrow. The error at this point
of the trajectory is high as there is a large difference
between the trajectory followed and the one that would
have been followed if that sensor configuration was to be
used. As the vehicle moves forward, past the false obsta-
cle, it reaches the middle point of the trajectory shown in
2. There are two obstacles at this point and the sensors
correctly detect one of them but fail to detect the other
(coloured in light blue). The path planner would then
try to stay away from the seen obstacle without taking
into account the presence of the unseen one. There is a
small difference between the manually-driven trajectory
and the one that the path planner generated, thus the
error is reduced. Finally, at the rightmost section of the
trajectory the sensors correctly detect the two obstacles
and, trying to stay as far away from both obstacles as
possible, the system plans a trajectory between them,



similar to the human driven one. As both trajectories
are equivalent the error is reduced to zero.
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Figure 2: The error for a particular sensor configuration
is equivalent to the difference between the driven trajec-
tory and the trajectory that would have been followed
when using that configuration. The red arrows depict
the human-driven trajectory while the black arrows de-
pict the path that the vehicle would follow while trying
to avoid the obstacles that are detected by the sensors.
The error is high at first, when the sensors incorrectly
detect an obstacle. As it moves forward, the error de-
creases as the sensor readings become more correct. The
yellow area is depicted to represent the points that lie
within a distance d from the vehicle. The points in the
trajectory that lie within this area are the ones that the
system will analyse to measure the error at the current
position.

To evaluate a sensor configuration the trajectory is
divided into overlapping sections. Thus, to analyse the
effect of a particular sensor configuration at time t1, the
behaviour up to a time t2, such that t2 > t1, is evaluated.
Time t2 can be defined through the euclidean distance
d among the first pd(t1) and last pd(t2) points of the
trajectory section. The points within distance d from
the vehicle are depicted in Figure 2 as a yellow area.

|pd(t2)− pd(t1)|2 = d. (1)

With the first and last poses defined it is possible to
command the corresponding path planner to generate
a trajectory pp(t, λ) based on the input of the current
sensor configuration. The error Jλ for sensor configura-
tion λ at time t1 is defined as the integral of the squared
difference between the two trajectories.

Jλ(t1) =

∫ t2

t1

|pd(t)− pp(t, λ)|2dt (2)

Once the performance of every sensor configuration
has been evaluated for a particular position, the opti-
mal sensor configuration λopt(t1) can be defined as the
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(a) Performance graph of three sensors. Their performance
varies with the position.
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(b) The objective is to select the sensor configuration that yields
the lowest error on each position.

Figure 3: Performance is improved by selecting the sen-
sor configuration that yielded the lowest error on previ-
ous runs.

one that yielded the lowest error. This is illustrated on
Figure 3.

λopt(t1) = arg min
λ

Jλ(t1) (3)

The optimal sensor configuration for a position
pcurrent can be approximated by the sensor configura-
tion from the point in the trajectory that is closest to
it.

tclosest = arg min
t
|pcurrent − pd(t)|2 (4)

λopt(pcurrent) ≈ λopt(tclosest) (5)

The training process can be performed offline, by first
recording a manually-driven trajectory with all the sen-
sor readings and then analysing each sensor configura-
tion through a simulation. At runtime, lookup methods
can be used to save computational power and memory.
For instance, the sensor configurations can be mapped
into the different positions along the map through Equa-
tions (4) and (5).



3 Experimental Set-up

3.1 Practical Considerations

The algorithm is implemented in C++ and runs on the
Robotics Operating System (ROS) [Quigley et al., 2009].
For the lasers, four Hokuyo range sensors were used.
The sensors were placed on the left right corners, in the
front and back of the vehicle, both mounted at height
hlaser ≈ 0.79 m. The laser scanners have an angular
resolution of 0.25◦ and a scan angle of 270◦. The laser
scanners were running at a frequency of 30 Hz and have
a maximum detection distance of 30 m. The vision sen-
sor was composed of a colour Point Grey Chameleon
camera holding a 1/3” CCD imaging sensor fitted with
Kowa lenses of 5 mm focal length and aperture F1.8.
The resolution was set to 800 × 600 pixels running at
a frame rate of 15 Hz. The system was mounted at a
height of 1.0 m. The sensors were mounted on a John
Deere Gator, an electric medium size utility vehicle (see
Figure 4), and driven manually and autonomously in
the unstructured and structured industrial environment
shown in Figure 5.

Figure 4: The test vehicle, a John Deere Gator holding
multiple sensors (lasers, camera, wheel odometry) was
used.

As seen in this figure, some sections of the road are de-
limited by low grass and bushes which change frequently
and are weak features for the 2-D laser sensors. Simi-
larly, some sections contain buildings with similar colour
as the road and a tendency to create strong shadows that
affect the estimation of the visual road detection algo-
rithm. Through the sensor-fusion method presented, we
expect the system to recognize which sensor configura-
tion yields the best performance on each region. Some
effects of the environment change with time, as do the
shadows; however, they are still region-bounded as it is
the building structure that tends to create such shad-
ows. Robustness can be achieved by analysing several

runs (at different times of the day and illumination con-
ditions) and avoiding the use of sensors in areas where
they have shown weak performance.

Among the relevant packages from ROS, we employ
the Navigation stack [Marder-Eppstein et al., 2010] and,
more specifically, the costmap 2d, and move base pack-
ages. The former provides a framework to combine the
sensor information into a two-dimensional costmap that
is used by the latter to generate trajectories for the ve-
hicle to follow.

3.2 Visual road detection

The visual road detection algorithm is based on an Ar-
tificial Neural Network. It works in a pixel-wise manner
with the following inputs.

• The three RGB channels.

• An illumination invariant image as described in[Al-
varez and Lopez, 2011].

• A gradient image created by applying a Scharr filter
followed by morphological operations. This created
an entropy filter that was useful for detecting the
vegetation.

• The pixel coordinates.

The images used as inputs are illustrated on Figure 6.
Labelling of the training data was performed auto-

matically as seen in Figure 7. The area inside the red
rectangle was always assumed to be background while
the area inside the blue rectangle was always assumed
to be road. This is a similar approach as used in CITE.
Furthermore, the neural network that was trained with
this data was then used to automatically label a second
set of training data. This allowed the introduction of the
pixel coordinates as input parameters. Figure 8 shows
the improvement.

3.3 Cost-map fusion

This section defines the sensor fusion method used for
the test platform. The idea is to map the obstacles from
every sensor into a costmap, giving different weights to
each sensor depending on the level of reliability expected.

For the case of n different sensors the combined
costmap Ct ∈ R2 is obtained by combining the costmaps
generated by each sensor C1,C2, . . . ,Cn, as follows.

Ct = α1C1 + α2C2 + . . .+ αnCn, (6)

λ = [α1, α2, . . . , αh]T ∈ Rn×1. (7)

Where αi represents the weight assigned to the cost-
map Ci and λ corresponds to a particular sensor config-
uration, that is, a specific collection of weights for the
sensors.

Two sensor configurations were tested where the sen-
sors’ costmaps were either enabled or disabled. This



means that the αi parameters were given binary values.
This was required due to the structure of the costmap 2d
package. In the case of the test platform used in this
experiment three costmaps were used. The first one cor-
responded to the map of the environment, which was
always enabled. The other two correspond to the obsta-
cles detected by the 2d lasers and the obstacles detected
by the visual road detection algorithm.

The costmap 2d package inflates the obstacles, assign-
ing the highest cost to the position where the obstacle is
located and a decreasing cost around it as the distance
from the obstacle increases. Figure 9 shows a visualiza-
tion of the costmap while the vehicle is moving through
it. The dark-blue points are the obstacles as seen by the
visual road detection algorithm while the red squares
correspond to the obstacles detected by the lasers. The
combined costmap is represented by the different tonali-
ties in the map. They go from light yellow (highest cost),
to cyan, pink and purple (lowest cost) where each colour
represents a different cost. The grey areas in the map
correspond to free-space (no cost associated). Figure
9 also illustrates how the sensor configuration changes
along the trajectory. At the left side of the image the
costmap built with the visual road detection was not be-
ing used and the combined costmap was built only with
the map and laser costmaps. Then, the costmap that
corresponds to the visual road detection was enabled,
which found obstacles that were closer to the vehicle.

3.4 Practical Considerations

The framework used set up some constrains for the ex-
periment

• Based on the range of the sensors used, the trajec-
tory was divided into sets of d = 20 meters.

• The human-driven trajectory was built with the
output of a laser localization algorithm.

• Only two sensor configurations were tested: Lasers
and Lasers with Vision. The vision based road de-
tection was not tested by itself since the lasers are
required as a security measure.

• Since the camera sensor’s behaviour is also a func-
tion of the time of the day, several runs where anal-
ysed, where a grid map of the performance of each
sensor configuration was created on every lap. The
results were then merged in order to obtain a single
grid map for every sensor configuration. The merg-
ing was performed by averaging the grid maps in a
cell-wise manner.

• In total 6 training laps and 6 testing laps were per-
formed

• Due to the structure of the costmap 2d package, the
weights of the sensor configuration λ were assigned

binary values. Thus, each configuration was a com-
bination of enabled and disabled sensors.

Additionally, since the system gives both the driven
trajectory pd and the path planner’s trajectory pp as a
collection of discrete poses, Equation (2) was adapted as
follows.

Jλ(k1) =
1

k2 − k1

k2∑
kd=k1

min
kp
|pd(kd)− pp(kp, λ)|2 (8)

Where k1 and k2 are the discrete equivalents of t1
and t2. A distinction is made among the samples of
the driven trajectory kd and those of the trajectory gen-
erated by the path planner kp since they do not always
contain the same amount of discrete positions. Similarly,
the cost is averaged as to not distinguish among trajec-
tories formed by a different amount of discrete positions.
Thus, the cost represents the average distance between
the points in the driven trajectory and the points closest
to them from the trajectory built by the path planner.

In order to quantify the robustness of the system the
concept of high error measurements is introduced, where
a high error measurement corresponds to cases where the
distance between the two trajectories is considered too
large for the vehicle to navigate safely. In this case an
average distance τ meters between both trajectories, as
defined in Equation (8) is used. Thus, the percentage of
high error measurements per trajectory can be defined
as follows.

PHEM =
1

kend − kstart

kend∑
kstart

[Jλ(k) ≥ τ ]. (9)

Where kstart and kend correspond to the beginning
and end of a trajectory respectively and the notation
[Jλ(k) ≥ τ ] corresponds to the Iverson notation where it
denotes a value of 1 if the condition is satisfied and 0 if
not. Thus, Equation (9) corresponds to getting the per-
centage of cases per trajectory where the error is greater
than τ .

4 Results

Table 1 shows the percentage of trajectory sections that
showed a high error via the PHEM as defined in Equa-
tion (9). Similarly, Figure 10 shows a graphical repre-
sentation of the PHEM with the different sensor con-
figurations. There is a reduction in the Percentage of
High Error Measurements when the Environment-Aware
Sensor-Fusion is introduced. As a reference, a full lap
around the trajectory includes approximately 1000 mea-
surements, and the width of the road at its narrowest
point measures approximately 3 meters. If a deviation
of 3 meters from the trajectory is considered unreliable,



Table 1: The percentage of trajectory sections that
yielded a high error is shown for each sensor config-
uration and for the environment-aware sensor-fusion
method. High error measurements were defined as those
that have an average distance between trajectories of
more than τ meters. They represent the situations where
the sensors incorrectly detected an obstacle, causing a
behaviour in the vehicle that did not resemble the one
followed when it was manually-driven (As a reference,
the width of the road at its narrowest point is of approx-
imately 3 meters). The environment-aware sensor fusion
method showed a decrease in the high error rate, which
translates into more robustness.

PHEM

Sensors conf. τ = 3 τ = 2 = 1
Lasers only 0.0050 0.015 0.0378

Lasers and Vision 0.1655 0.1752 0.2214
E.A. Sensor-fusion 0.0018 0.0033 0.0163

the Environment-Aware Sensor-Fusion would only reach
this value in 1.8 trajectory sections, against 5 and 16.5
occasions for the Lasers and Lasers with Vision com-
bination. Thus, the Environment-Aware Sensor-Fusion
method has a reduction of 62.5% when compared to the
Lasers and a reduction of 98.7% when compared to the
Laser and Vision combination.

The performance of the two sensor configurations has
been plotted for the six training runs in Figure 11a. The
higher error values are those where the sensors incor-
rectly detected an obstacle and the path planner had
to look for a long trajectory around it or alternatively
failed to find one. These were clipped at a value of 3 for
visualization purposes. This occurred frequently when
the visual-based road detection algorithm incorrectly de-
tected an obstacle due to the strong shadows produced
by the buildings or the trees. Figure 11b shows the dis-
tribution of errors along the map. It is evident, from
observing the repeatable behaviours among the different
runs, that there is a correlation between the map region
and the sensor performance.

A mapping from position to optimal sensor configu-
rations was built through equations 4 and 5. Figure 12
shows the optimal configuration along the trajectory.

The results of using the new configuration map on
the testing runs is shown in Figure 13. By comparing
the error plots to the ones from Figure 11, it is evident
that there was a decrease in the amount of high-error
readings.

5 Conclusion

This work presents an approach for obtaining environ-
ment awareness in sensor fusion. It is shown that in

environments where the sensor behaviour changes with
the region in the map, it is possible to select an adequate
sensor configuration based on experience from previous
runs. Experimental results show a higher robustness as
measured by the amount of high error readings.

Future work could use a similar methodology for other
applications in navigation, such as localization, where
the sensor behaviour also varies along the different re-
gions in the map.
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is marked in red. Similarly, differ-
ent regions where the sensors may
not perform correctly are high-
lighted.

(b) This region has a road de-
limited by grass. A laser set-up
can not detect the grass as a non-
traversable area.

(c) The colour of the sidewalk
and buildings in this section may
cause false positives in the visual
road-detection algorithm. Simi-
larly, the strong shadows also af-
fect the outcome of the algorithm.

Figure 5: The sensors’ performance varies along the dif-
ferent sections of the trajectory



(a) RGB channels.

(b) Illumination invariant image. Notice the re-
duction of shadows.

(c) Gradient image built with a Scharr filter fol-
lowed by morphological operations.

Figure 6: The input parameters for the neural network
are shown. Additionally, the pixel coordinates were also
used.

Figure 7: This image shows the auto-labelling proce-
dure. Pixels taken from the red rectangle were labelled
as background while pixels taken from the blue rectangle
were labelled as road.



(a) Neural network trained with the labels created from the
rectangles in Figure 7. The road is not consistent.

(b) By using the first neural network trained to label the
data, the pixel coordinates could be included as parameters,
which improved the performance of the classifier.

Figure 8: The two steps of the training process for the
visual road detection algorithm. A first neural network
was used to label the data for a second neural network.

Figure 9: Visualization of the vehicle traversing through
the costmap. The blue lines represent the obstacles
as detected by the visual road detector while the red
squares are the obstacles detected by the laser. A change
of the sensor configuration, first without vision and then
both sensors, can also be seen.
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Figure 10: Graph that shows the percentage of high error
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both trajectories τ as described on Equation (9)
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(a) Performance graph of the
sensors in 2D.
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(b) Performance graph of the sensors in 3D. Due to the similar
behaviours among different runs it is evident that there is a
correlation between the region and the sensor performance.

Figure 11: The error incurred by each sensor is plotted
among different runs. The error is clipped at a value of 3
to facilitate visualization. The sections of the trajectory
that have such a high error correspond to the cases when
the sensors incorrectly detected an obstacle, making the
path planner build a much larger trajectory than needed.
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Figure 12: Map of the trajectory that shows the optimal
sensor configurations along the route
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(a) Performance graph in 2D.
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(b) Performance graph in 3D.

Figure 13: The error incurred by the optimized sensor
configuration is plotted among six runs. The error re-
mained low among most of the trajectory. The error is
clipped at a value of 3 to facilitate visualization.


