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Abstract

Landmine detection is one of the most com-
pelling cases for autonomous robotics. The
risks involved for human workers in charge of
identifying and clearing the devices are ex-
tremely high. A challenge around the detec-
tion and clearance process is how to indicate
that an area has been cleared and is then safe.
The community and workers around a minefield
need a direct visual indication of scanned and
unscanned regions.

We present an autonomous ground vehicle that
performs field coverage and autonomously de-
posits white and red painted lines (these colours
follow a United Nations convention) to guide
the vehicle in scanning the minefield while also
presenting a clear marker of scanned (white)
and unscanned (red) areas, which is valid even
on incomplete scans. The system consists of
several modules which include: a novel line de-
tection system coupled with a visual-servoing
mechanism to follow deposited lines, a state
machine to indicate what type of lines should
be painted, and control modules for the au-
tonomous vehicle. These painted lines take the
place of red and white painted sticks or stones
that have been used for decades in demarking
these hazardous areas. We present experimen-
tal results illustrating the applicability of the
system.

1 Introduction

Landmines are one of the most a✏icting consequences
of post-war in modern times. Although there is a global
e↵ort (the Mine Ban Treaty) to reduce their impact, it
is very di�cult to detect and remove these device espe-
cially if they are located in unstructured environments or
near crop fields. Although it is impossible to know the
exact number, according to the United Nation statis-
tics and the International Campaign to Ban Landmines

(ICBL), it is estimated that more than 50 million land-
mines exist in the ground in more than 60 countries,
causing more than 10,000 deaths and 20,000 injuries ev-
ery year [lan, 2017]. The cost of clearing a mine is very
high, particularly to poor countries, which su↵er most
from the presence of mines. The clearing process is usu-
ally performed manually, which is time consuming and
extremely dangerous. For those reasons, there is ongoing
research for demining robots to be used in the detection
and deactivation of those device.

The method for landmine removal depends on factors
such as terrain, landmine distribution density, soil den-
sity, and type of vegetation. A United Nations recom-
mendation, however, is that in the scanning process the
fields are marked to indicate areas that have been cleared
versus areas that have not been cleared. For this indica-
tion, markers of white and red colour are used, where the
white side represents ‘safe’ and the red side represents
‘unknown’ (or danger). Traditionally, coloured rocks,
sticks or paint is used to represent the scanned areas.
It is very hard, though, to incorporate these marking
strategies in most mobile robot demining robotic solu-
tions.

We propose a system that uses a small car-size robotic
vehicle as the platform to carry a landmine detection and
deactivation device. The robot is equipped with a ‘line
marking’ system that autonomously (and coherently) de-
posits red and white paint on the field based on areas
that have been covered or not (Figure 3). The robot
navigates with the goal of performing full coverage of a
field and uses its own deposited lines as a guide for pre-
cise coverage. To follow the lines, a novel line detection
strategy is proposed, which is suitable for irregular and
‘noisy’ terrain, and built as a visual-servoing module. A
state machine determines whether the vehicle should de-
posit white or red paint on the ground. The following
components form the full navigation and marking sys-
tem:

1. The general area of interest is determined by the
user through a bounding polygon in a graphical user



interface (GUI) based on satellite image maps;

2. In the field the robot then uses a combination of
visual servoing with wheel odometry for odometric
localisation;

3. As the robot moves, it paints the ground en-
abling/disabling the painting mechanism;

4. The mission is completed when the whole area has
been covered and the field is marked appropriately.

Although the landmine detection itself is not part of
this paper (we focus here on the robotic component - the
detection device is built by a partner organisation), our
goal is to illustrate that this new design is a practical al-
ternative for e�cient landmine clearance. In our current
implementation the maturity of our system is suitable
for the primary case of relatively flat fields without ob-
stacles. We intend to explore the more challenging cases
of minefields with obstacles and unusual field shapes in
future iterations.

2 Literature Review

There exists a number of strategies for landmine detec-
tion. A significant amount of research e↵ort has been
directed towards sensor technology, which includes elec-
trical impedance sensors, acoustic sensors, electromag-
netic induction sensors, radiometry, radar, infrared and
microwave sensors [Trevelyan, 1997; Won et al., 2001]
Robotic technology aims to incorporate one of these
sensing techniques in an autonomous or remote con-
trolled robot, in order to remove the need for humans
to closely inspect the field.

Legged robots have been one of the main alternatives
for demining robots due to their potential ability to nav-
igate through uneven terrain. Earlier works [Gonza-
lez de Santos* et al., 2005; Huang and Nonami, 2003;
Estremera et al., 2010] focused mostly on defining e�-
cient designs and gait patterns. One of the disadvan-
tages of legged platforms are their less energy-e�cient
locomotion and complex control.

The Gryphon robot [Fukushima et al., 2005] is a four-
wheeled vehicle which also performs scanning manipula-
tion. It is design as an all terrain vehicle. The platform
paints marks on the ground to indicate the locations of
the mines. The Ares robot [Santana et al., 2007] con-
sists of four independently steered bicycle wheels. The
design is supposed to be cost e�cient and is able to use
four di↵erent configurations (Ackerman, turning point,
omnidirectional, lateral mode), depending on the most
suitable locomotion type. The TRIDEM platform [Bau-
doin and others, 2008] is a three wheel robot each with
each wheel having an independent driving and steering
system. The vehicle is remote controlled by an opera-
tor based on the images streamed by the camera on the

robot. The FSR Husky mobile wheeled robot was devel-
oped to assist humans with landmine detection [Portugal
et al., 2014] using a Clearpath Husky A200 robot base.
A ground vehicle was developed for landmine detection
based on Teodor platform [De Cubber et al., 2014]. A
three-wheeled mobile robot was designed for demining
purposes without any suspensions system [Doroftei et
al., 2014] while a modified agricultural machine for re-
motely controlled unmanned mine-clearing robot was de-
signed by Hemapala et al [Hemapala et al., 2009]. The
MIDERS-1 and 2 robots use a caterpillar chain based
mobile platform [Suh et al., 2014], presenting good abil-
ity to navigate through rough terrain.

A more complete review of a number of platforms is
presented by Marques et al [Marques et al., 2016]. All
of the designs above present advantages and drawbacks
regarding navigation and detection ability, but none ad-
dresses the marking of covered areas, which is an essen-
tial (and mandatory, according to o�cial United Nations
guidelines) part of the demining process. The system
proposed in this paper can potentially be adapted to
many of the robots above.

3 System Description

In this section we describe the main components of the
system. The vehicle used in our development for the
terrain navigation and terrain marking is shown in Fig-
ure 1. The image illustrates the arms used for spray-
painting the ground, the cameras used to detect and fol-
low the painted lines and the 3D localisation system for
autonomous navigation.

The overall goal of the system is to cover a given areaA
as e�ciently as possible while not missing any regions of
A. An area is considered ‘covered’ if the vehicle traverses
over it while scanning the ground with a low-resolution
magnetic detector mounted in the front of the vehicle,
as illustrated in Figure 2. As discussed in Section 1 this
paper focuses on the navigation/coverage/marking com-
ponents and the landmine detection is not part of this
research, hence the landmine detector is not mounted on
the vehicle for our experiments. In the following we will
discuss:

• The choice of the driving pattern for field coverage.

• The design of the camera and spraying systems.

• The state-machine used for action control.

• The ground line detection system.

• The design of the forward, backwards and manoeu-
vring motion.

3.1 Choice of Driving Pattern

The area of interest is scanned in a ‘comb’ pattern
whereby the vehicle drives forwards to the far edge of



Figure 1: Overview of the autonomous platform used
for field scanning and marking. The lidar localisation
system is installed in preparation for future projects, and
was not used in this paper.

the region, then retraces its path in reverse, before driv-
ing across to the next lane in what we will refer to as
the ‘dogleg’ manoeuvre. This pattern is then repeated
for each ‘lane’ that is scanned, as illustrated in Figure 3.
This pattern avoids a more challenging turning manoeu-
vre at each end of the field, and allows the scans to take
place on rectangles that have no space for turning at the
far end.

Initially, as the vehicle travels forwards, it sprays the
left side with white paint (as it has just scanned the
ground and the area to the left of white is deemed as
safe) and the right side with red paint (right side of red
is unsafe). As it travels backwards, it simply follows
the marked lines. It then moves forwards, onto the next
lane to the right (the dogleg) where it oversprays the
previously painted red line (now on the left) with white
paint.

3.2 Choice of Camera and Sprayer
Locations

Figure 4 shows the location of cameras and paint spray
arms on the vehicle. These are positioned to optimise the
ability to follow the painted lines in a stable manner.

The left camera is placed level with the front axle,
so that wheel angle changes have a direct and immedi-
ate e↵ect on the position of the sprayer, which is placed
just behind the camera view. This avoids the overspray
(white) interfering with the line detection, but also al-
lows the camera to observe spray location in future up-
grades. This is useful, for example, if winds are o↵setting
the sprayed paint slightly from where it is expected to

Figure 2: Illustration of the low-resolution magnetic sen-
sor (highlighted in white) that can be mounted on the
vehicle.

land. The right camera is placed level with the back
axle. This is the only point along the length of the car
that is not o↵set laterally by steering the vehicle. It is
therefore the most stable location to control to follow
the red line, that was painted on the forward run.

The right painter is less constrained in its position,
but is best placed also next to the back right wheel.
This is because the backwards line detection needs to
have painted line all the way back to the start of each
lane.

3.3 State Machine

The control of the vehicle follows a hierarchical state ma-
chine, as shown in Figure 6. This means that each state
can contain a finite state machine within it, to perform
the more specific actions to achieve the goal of the par-
ent state. In our case we have one base state (scan field),
with the purpose of scanning the minefield according to
the specified length and width of the field. This state ac-
quires the pertinent sensory information and outputs the
control messages to the motor controllers, transitioning
out only when the expected width been scanned.

Within this are five child states that run in a cyclic
pattern, representing the repeated behaviour to scan
each lane, as visualised in Figure 3.

3.4 Line Detection

The task of the line detection module is to convert a
downwards facing video stream of ground with a painted
line on it, into a position and gradient of that line.

The task is modeled as a ridge-detection task for a
particular known line colour (red or white). As with
most outdoor image processing applications, the main
di�culty is the variable lighting. It is expected that the



(a) Example of minefield coverage pattern using a simple sim-
ulation under noise (the orange box represents the vehicle).
The image shows white paint (from front left sprayer) over-
painting the red lines (back right sprayer). White windows
show the camera views of the ground.

(b) Aerial view of the real vehicle performing the coverage
illustrated in (a).

Figure 3: Illustration of the coverage and driving pat-
terns.

vehicle may be running in any condition from low, over-
cast light, to strong sunlight. The camera pixel value
of the painted line can vary greatly over this range, and
indeed overlap the range of pixel values for the surround-
ing ground. There is not restriction on the background
colour, and the system must handle anything from dusty
earth to grey gravels and green grass colours.

The second challenge of lighting is shadows. For

Figure 4: Plan view of the autonomous vehicle, high-
lighting the downward-facing camera and sprayer loca-
tions.

Figure 5: 3D illustration of the components shown in
Figure 1.

line detection it is particularly challenging because the
straight-edged shadow of the vehicle will be apparent for
some sun angles, which gives a strong straight edge that
creates a false positive for many line detection methods.

To address these lighting challenges we apply an initial
intensity function i = f(r, g, b) that converts a three-
dimensional RGB colour value into an intensity value i.
This is specialised for the lighting conditions and paint
colours that we are testing under. The function is:

i = [3/2� 5|(r, g)/(r + g)� c|]10 (1)

where [x]10 clamps x between 0 and 1, and c is the target
colour: (2/3, 1/3) for red lines and (1/2, 1/2) for white
lines.

This function ignores the blue component of the pixel
colour entirely, as we found that it varies excessively with
lighting changes. The remaining red and green compo-
nents are divided by their sum, to make the function



Figure 6: An overview of the hierarchical state machine for minefield scanning. ‘scan field’ is the parent state, with
five child states shown as the darker blue boxes. External arrows indicate the input and output data. Bold arrows
indicate transitions, and the dotted arrow indicates the initial child state.

independent of light level. The function therefore only
discerns images by their red-green hue, and the proxim-
ity of this to the red-green hue of the target paint colour.
The 3/2 value avoids the observed red-green hue needing
to be a perfect match for the target hue, keeping the line
intensity more consistent.

We now have an intensity image, with a signal of a high
intensity 5-7 cm wide line, within a background of mixed
intensity ‘noise’. The next step is to apply a Di↵erence-
of-Gaussians (DoG) filter to the signal, to convert the
wide line into a more distinct peaked ridge. This DoG
filter is a band-pass filter, which we configure to enhance
the spatial frequency band corresponding to the 5-7 cm
thick line. It therefore acts to convert the solid bar into
a signal closer to a single ridge, while suppressing high
frequency noise.

With this ridge we now apply the Hough Trans-
form [Hough, 1962] to e�ciently extract the candidate
lines of best fit based on the intensity image. The results
are shown in Figure 7.

3.5 Odometry

In the underlying ‘scan field’ state, we maintain a state
estimation of the vehicle using wheel odometry. This
integrates the measured wheel rotational velocities to-
gether with the steering angle and the Ackermann ve-
hicle kinematics. This is odometry is used for estimat-
ing the initial pose for the ‘dogleg’ manoeuvre, and in
estimating when to exit each state, based on distance
travelled.

3.6 Forward Line Tracking

This task is to control the vehicle steering angle ✓d in
order to keep the detected line in the centre of the cam-
era image. This line has angle ✓l and the front wheels
have mean average angle ✓. These are all in the same
coordinates, with zero being in line with the forward axis
of the vehicle, and positive values driving the vehicle to
the right.

This task is performed using a variation of the stan-
dard PID controller. It uses the distance from line centre
to camera centre as the error to be minimised, and the
steering angle as the control parameter. The D part of a
PID controller is used to converge to a uniformly moving
target. In our case, the rate of change of error is known
from the current steering angle and the line angle, so we
do not require a feedback D gain here, we just constrain
the steer angle directly to equal the line angle: ✓d = ✓l.

Physically speaking, this is continuously setting the
tyres to be parallel to the observed line. This controller
will of course drift over time, so we include the P term,
which adds an additional steering angle to track back
towards the detected line position.

✓d = ✓l � Pe (2)

where e is the error, the di↵erence between the mid-point
of the detected line (xl) and the centre of the camera
image, which is inline with the sprayer location. Positive
e means the vehicle needs to move further to the left.

As a kinematic controller, the vehicle should not oscil-
late. The P term applied to the steering angle, together
with the parallel wheel angle term, should bring the ve-
hicle into alignment in a manner that tends towards an
exponential decay.

This of course does not happen in practice, as the com-
manded steering angle is not met, either immediately or
precisely. There is a delay of up to half a second in the
full feedback loop, from line detection, to commanded
motor angle, to physical movement of the tyres. Nev-
ertheless, we have found that when the P value is not
overly large, and there are high gains on the low level
steering controller, the oscillation is minimal.

3.7 Backward Line Tracking

With respect to path distance, forward line tracking is
fundamentally a first-order problem: one can turn tyres
to drive the front wheels at a chosen angle towards the



(a) Shadows create additional straight edges. Strong
lighting causes over- and under-saturation. Red lines on
red earth.

(b) Rocky ground, and at a di↵erent time of day, the blue
content is very di↵erent.

Figure 7: Challenges that our line detection method had
to overcome. Taken from field trials.

line. Backward tracking however, is a second-order prob-
lem: one cannot directly set the angle of back wheels to-
wards the line, only its curvature. This makes it a more
di�cult tracking task in general.

We control the backwards line tracking using the fol-
lowing controller:

✓d = tan�1(Lk) (3)

k = �!
2
eH � 2!✓l (4)

where L is the vehicle length between axles, and H is
the half-width of the camera view on the ground. This
function is very similar to the critical damping function
ẍ = �!

2
x � 2!ẋ which produces stable second-order

tracking without oscillation. The di↵erence is that it
is operating on curvature (the second di↵erential with
respect to forwards distance), rather than the second
di↵erential with respect to time. The tan�1(Lk) trans-
forms the desired curvature k of the vehicle path into
a mean front wheel angle, as expected from Ackermann
steering.

As with the forwards line tracking, the controller is
a function of the detected line lateral error e and the
detected line angle ✓l, with negative feedback on the

error component. However, unlike the forward track-
ing, the backwards tracking directs the steering angle in
the opposite direction to the detected line angle. If the
line angle tilts clockwise then the front wheels turn anti-
clockwise, because the vehicle chassis turns counter to
the wheel angle in backwards motion.

For backward tracking, the feedback is less immedi-
ate, we therefore use a lower gain than forward tracking,
specified as !.

3.8 Dogleg

After tracking the white line on the left on driving for-
wards, and tracking the red line on the right in reverse,
we then need to drive into the next lane to the right.
This is the most di�cult part as we move away from
the painted line and rely on just wheel odometry until
we find the new section of white line in the left camera
view.

The ‘dogleg’ manoeuvre follows a spatial S-like curve
of length d. We model it as a curvature that follows a
sine wave k(s) = a sin(2⇡s/d)/L for some amplitude a

at path distance s along the curve. At each time step
during this motion, we find the nearest point on this
curved path to the predicted pose of the vehicle. We then
obtain the lateral o↵set in metres from the vehicle’s left
camera view centre on the ground to the curve (eH). We
also calculate the angle between the path’s tangent and
the vehicle forward axis (✓l), and the path’s curvature at
this point (k). Now we perform line tracking according
to:

✓d = tan�1(kL) + ✓l � Pe (5)

This is similar to the forward line tracking, but includes
the curvature term since the path has a well-defined cur-
vature in this case.

3.9 Persistent O↵sets

The above controllers work well in theory, but in prac-
tice there are misalignments and systematic errors that
cause the vehicle to not converge to the line, but in-
stead converge to some o↵set from the line. The cause
of this may be internal (e.g. tyre pressures, camera mis-
alignments) or external (e.g. sideslip when driving on a
lateral slope), in both cases we can remove this o↵set by
including the I (integral) term of the PID controller.

The I term requires some tuning. If it is too small
then it will not adapt quickly enough when the cause
of persistent errors changes, such as the slope changing.
If it is too large then it introduces oscillation into the
vehicle’s motion. In each of the above controllers, we
include this additional term to the motor steering angle:
[I
R
e dt]0.5�0.5

This I term has two issues of windup. Firstly, if a
persistent error cannot be resolved then the I term can
grow without bound, we fix this by providing limits on



the I term, as shown above. Secondly, the integral term
should not need to ‘wind up’ each run. We resolve this
by calibrating the integral term due to internal e↵ects on
a flat field, and storing this term, for use as the initial
value (the constant of integration). In fact we store a
separate initial value for the forward and backward line
tracking, as their dynamics are di↵erent.

3.10 Velocity Control

The high level control of velocity is simple. We keep the
vehicle at a constant velocity of 0.6 m/s for the dogleg,
forward tracking, and backward tracking, with a linear
deceleration at the end based on a distance travelled es-
timation. That is, we prescribe a linear ramp down of
velocity with proximity to the expected path distance
for each manoeuvre. The distance travelled is an in-
tegration of the wheel velocity measurements from the
start of each manoeuvre.

The initial acceleration phase is a consequence of the
underlying vehicle velocity control gains, we do not
specifically ramp them up.

3.11 Simulation

In order to test the robustness of our scanning method,
we used a simple simulation of the Ackermann steer-
ing model under noise. This retrieves the motor control
outputs (shown in Figure 6) and simulates the line de-
tection, and new steering angle and path distance values
that enter the ‘scan field’ base state. The steering and
velocity of the vehicle are not immediate, they are mod-
elled as an exponential decay towards the desired control
✓d and vd. Noise is added to these two components and
also to the location of the detected line.

Modifying these noise parameters helps in estimating
how the scan pattern will develop under the more dif-
ficult conditions. In Figure 3 the initial gap between
white and red lines after lane three demonstrates that
the ‘blind’ dogleg manoeuvre is the part that is most
sensitive under high noise levels.

4 Experiments

In this section we describe details of our hardware and
software implementation followed by experimental re-
sults.

4.1 Hardware and Software Setup

Vehicle and Sensors

The vehicle used is an electric John Deere Gator TE
automated by the CSIRO [Pfrunder et al., 2017]. The
vehicle has had an automation kit installed with Smart-
Motors to control the steering and brake actuation. The
cameras used for line detection and tracking are Point
Grey (Flir) Grasshopper 3 colour cameras.

Figure 8: Onboard GUI to visualise line detection, vehi-
cle trajectory and state.

Computing Hardware and Software

The Computing hardware used is a rugged embedded
Neousys Nuvo-7006 PC with an Intel i7-8700 Processor.
Distributed IO was performed by an Advantys STB sys-
tem and the safety system runs on a PILZ PNOZmulti
safety controller.

The system was running on Ubuntu 18.04 and the
ROS (Robotic Operating System) middleware. The con-
trol system software and Advantys IO interface software
is proprietary. Camera interface software is open-source
through the ROS system.

Paint System

The painting system consists of two independent domes-
tic airless wet paint spray systems (Wagner Control Pro
150). To activate and deactivate spraying, we installed a
24V high-pressure solenoid valve located before the noz-
zle. System power was supplied via a 1200W DC/AC
inverter run from the test vehicles internal batteries. All
components were mounted to an adjustable steel frame
(shown in grey in Figure 5) secured to the back tray of
the vehicle. Once mounted, the positioning of each spray
nozzle was achieved by manual adjustment of clamp-
ing mechanisms on the steel frame. The spray systems
solenoids were then connected and controlled via the ve-
hicles distributed IO system.

4.2 Results

The first set of results measures the e↵ectiveness of the
line detection algorithm. We have manually observed
the detection of red and white lines, over four runs,
representing approximately 10 minutes of footage, and
recorded the errors away from the correct line. There was
high variability in the background, ranging from green
grass to dirt and rocky terrain. The results are shown in
Table 1. An illustration of the GUI with the real-time
detection and vehicle state is shown in Figure 8.

Next, we present the full demonstration of the system:
a scan of 10 rows of 12 metres in length, representing



Video Total Period with Incorrect
type time line present period
Red 1 167 s 141 s 0 s
Red 2 64 s 45 s 0 s
White 1 246 s 193 s 0 s
White 2 118 s 118 s 1.5 s

Table 1: Period of incorrect line detection (not overlap-
ping the painted line). This represents 0.3% of the time
when lines were in view.

a minefield of approximately 231 m2 in area. Opera-
tionally, the fact that we lay down paint makes it very
di�cult to perform multiple runs (as once the field is
painted it cannot be used again), so the tests leading
up to this result were performed in di↵erent fields. We
present this single long run, rather than multiple short
runs because it is important to observe how the vehicle
behaves when scanning a large number of rows, and to
what extent the vehicle path drifts from row to row.

For this single large scan, we have taken an aerial im-
age (Figure 10) and are able to obtain error metrics by
manual pixel counting of any remaining red lines that
were not fully covered by the white painted line. For
each length where red line is still visible, we estimate
the mean pixel width of that sliver of uncovered paint,
and its length along the line. Adding these up and mul-
tiplying by the image’s pixel scale (1.04 cm) provides
our measures of error for this experiment. These error
statistics are displayed in Table 2. While this shows some
perceptible alignment errors, they are not large enough
to a↵ect the success of the operations, with the vehicle
covering and marking the field according to the require-
ments. Figure 9 shows that the errors do not impact the
performance of the marking system.

Figure 9: Illustration of the ‘live’ spraying of white paint
over red paint. The small precision errors shown in Ta-
ble 2 do not a↵ect the practical performance of the mark-
ing system.

Figure 10: The result of scanning 10 rows of an area
representing a minefield, by line following each painted
lane in turn.

Measure Value
Number of rows 10
Total line length 120 m

Mean line length per row 12.0 m
Area scanned 231 m2

% of line with any visible o↵set 25.3%
Maximum error 10.0 cm

Mean Absolute Error 0.88 cm
Root Mean Square Error 1.82 cm

Mean change in bearing per row 0.532o

Table 2: Estimated errors by manually measuring thick-
ness of remaining visible red lines in Figure 10.

4.3 Discussion

Looking at the resulting scan in Figure 10, the largest
errors occur at the top. This is expected, as this is where
the dogleg manouevre ends and the tracking of the red
line resumes. This dogleg relies entirely on wheel odom-
etry, so is expected to have some variation.

Overall, the lines remain almost straight, which is im-
portant. We believe one reason for this stability is the
positioning of the sprayers and cameras. The vehicle
tracks the left-side red line at the front axle position,
while spraying the right-side red line at the back axle
position (see Figure 4). Due the front-wheel (Acker-
mann) steering, the painted red line acts physically as a
low-pass filter on the left-side line tracking. This keeps
the lines smooth, and prevents buildup of line deviations
from row to row.

A video illustrating the vehicle operat-
ing and the overall concept is available at
https://youtu.be/JfEoLkIYQ84



5 Conclusions

We have illustrated that a minefield scanning vehicle is
capable of precise coverage using only wheel odometry
and painted line tracking. This is an important baseline
result, because additional forms of localisation (SLAM,
GPS, INS) have failure cases, such as in featureless envi-
ronments or canyon areas. We therefore need to be able
to rely on minimal sensing options for whenever more
advanced localisation is not suitable.

Minefield clearance requires a visual marking of
cleared areas and the proposed system with spray paint-
ing from the vehicle is one of the clearest and most direct
ways of achieving this. It follows that the vehicle must
accurately scan within the lines it has itself sprayed, and
therefore localisation by line tracking is almost a direct
consequence of the requirements of minefield clearance.
We have demonstrated that this system does work with
su�cient accuracy in real-world environments.

In future we intend to tackle the more challenging sit-
uations of obstacles in the field, more hilly ground, and
non-rectangular clearance regions. This will require the
fusion of the baseline localisation with SLAM and GPS
systems, and will require planning algorithms to deter-
mine the coverage pattern.
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