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Abstract— Understanding the kinematics of a ground robot

is essential for efficient navigation. Based on the kinematic

model of a robot, its full motion capabilities can be repre-

sented by theoretical motion primitives. However, depending

on the environment and/or human preferences, not all of those

theoretical motion primitives are desirable and/or achievable.

This work presents a method to identify effective motion

primitives (eMP) from continuous trajectories for autonomous

ground robots. The pipeline efficiently performs segmentation,

representation and reconstruction of the motion primitives,

using initial human-driving behaviour as a guide to create

a motion primitive library. Hence, this strategy incorporates

how the environment affects the robot operation regarding

accelerations, speed, braking, and steering behaviours.

The method is thoroughly tested on an autonomous car-like

electric vehicle, and the results show excellent generalisation

of the theoretical motion primitive distribution to real vehicle.

The experiments are carried out on large site with very diverse

characteristics, illustrating the applicability of the method.

I. INTRODUCTION

Motion planning for autonomous field robots is a daunting
problem, not only because of the complexity of planning
under the traditional kinematic, dynamic constraints, the
uncertainty of observations and actuation, but also the effect
of often unobservable environmental factors. Expert human
operators have an uncanny ability to infer the operational
parameters of varying environmental and task conditions
for many field vehicles and successfully execute the task
at hand. For instance, human drivers of all-terrain vehicles
constantly respond to the terrain feedback, ground conditions
like soft soil or hard surface, hilly or planar surfaces, by
modulating their speed, turning radius and angular speeds in
near real-time. The complexity of the interaction of all these
parameters preclude the use of explicit modelling for motion
planning and control for autonomous navigation. Traditional
grid based [1] or sampling based [2], [3], approaches have
achieved remarkable success in motion planning for ground
robots primarily on planar surfaces like road networks. Such
approaches often tend to treat environmental characteristics
as a disturbance to either be handled at the controller level
or incorporate some kind of motion limiting constraints at
the kinematic or system dynamics level. They do not model
the environment itself nor examine how the robot and the
environment interact. As an example, they consider the full
spectrum of the theoretical kinematics and only introduce
some heuristic bias towards the goal, inspite of the fact that,
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depending on the environment, not all kinematics are feasible
and/or necessary.

It is important to note that modelling the environment
in enough detail for the necessary subset of the kinematics
to be identified is a computationally expensive task and it
would require extensive modelling that would need to be
repeated for every slight change in the environment. Since
an explicit model of the environment is therefore intractable,
another approach should be investigated. This is particularly
relevant in field robotics, since it deals with highly dynamic
environments with significant uncertainty.

The search space for motion planning with the full kine-
matics of a robot is generally quite large. In most cases,
searching all of it is often infeasible. For efficiency, an
alternative is to bias the search space with some heuristic
rule. Still, this representation only includes the inherent
kinematics of the robot, but not the effects of the environment
on those. This paper solves the problem of identifying this
robot$environment relationship and thereby the effective
motion primitives of the robot in that environment. Such
characterization finds application in a number of scenarios
where the environment is initially mapped and autonomous
vehicles operate consistently over that environment based on
that specific map. Typical examples include manufacturing
areas, industrial environments, oil and gas plants, agricultural
fields, among others.

The problem has two main aspects: one is (i) the seg-
mentation of the trajectory and the other is (ii) the compact
representation of those segments as motion primitives. The
requirement on the segmentation procedure is that it can
process the data sequentially in an online fashion, hence
needing real time capability. The representation needs to be
memory and speed efficient when it comes to reproduction.
In addition, the representation needs to allow for a com-
parison between the theoretical forward kinematics and the
real data and ideally be able to use both information spaces
simultaneously.

The proposed concept, coined effective Motion Primitives
(eMP), approaches this problem by automatically segmenting
the trajectories into unit motions that are represented by
motion primitives. eMP consists of a complete pipeline that
performs the segmentation, representation and reconstruction
of the motion primitives. The method is extremely efficient
computationally and provides a practical suite of motion
strategies can be be effectively applied for ground vehicle
navigation. Experiments with a car-like robot show the
applicability of the approach in industrial areas, roads, and
unstructured/off-road terrains. It is important to note that
the method does the reconstruction of the motion primitives
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Fig. 1. Flow diagram for the algorithm. The process starts at the ‘robot’ block. Blocks with solid line borders do not change over time once their
parameters have been defined. Blocks shown in dashed lines are constantly being updated. The key output is a trajectory with steering angle and a speed
for the robot to move.

in a global sense (a map of the environment is assumed).
Hence, a baseline algorithm for comparison is, for example,
the A* [1], for which results are also presented.

This paper is organised as follows. Section II presents
related work on motion primitives, trajectory segmentation
and programming by demonstration. Section III describes
eMP the algorithm in detail. Sections IV and V demonstrate
the application of the algorithm in theoretical and real-world
scenarios, respectively.

II. RELATED WORK

Motion primitives are a well-known concept in robotics
and a number of frameworks have been developed [4], [5],
[6], [7]. Most of these approaches require manual segmen-
tation of the robot trajectories [8]. Automatic segmentation
and clustering are usually performed using stochastic meth-
ods [9], [10] and/or expectation maximization [11], [12]
strategies. The scalable online sequence clustering (SOSC)
algorithm [13] works by relying on small-variance asymp-
totics for the online updating of large scale Bayesian non-
parametric mixture models. It is a useful tool for clustering
an online trajectory when the number of clusters is initially
unknown.

Finding lower dimensional representations of trajectories
that can be reconstructed to the original movements has
also been done through ‘programming by demonstration’
(PbD) [14], which aims at teaching skills to a robot without
having to explicitly program them using a computer language
[15], [16]. A key goal of programming by demonstration is to
generalize previously acquired knowledge to operate in new
situations, as for example, by generating a trajectory database
using Gaussian process regression [17] with dynamic move-
ment primitives [18] as the representation. Extracting invari-
ant patterns from demonstrations is also required for the
generalization of skills to new situations [19]. For instance,
the robot needs to understand the demonstrations at a higher
level while being invariant to the appearance and geometric

aspects of objects (such as position, size, orientation and
the viewpoint of the observer in the demonstrations), extract
invariant segments (also termed as sub-goals or options),
and smoothly follow the generated sequence of states (i.e.
with a linear quadratic tracking controller). Alternatively,
the demonstrations can directly be incorporated into the
trajectory optimization [20].

Research has also investigated moving the learning from
demonstrations into an online setting since real time model-
ing of complex nonlinear dynamic processes is important in
various areas such as humanoid robotics [21], [22], Learning
online requires incremental learning of motion primitives
from observations. Stochastic segmentation is then used to
partition the continuous observation sequence into motion
segments. The identified primitives can then be incrementally
clustered and organized into a hierarchical tree structure
representing the known motion primitives.

In contrast to the works mentioned above, eMP features
deterministic segmenting of a trajectory according to hyper-
parameters. In addition, eMP can be used online and is
therefore capable of immediately adapting to changes in
the environment. Our approach is also distinguished by
the fusion of theoretical motion primitives with knowledge
acquired from real world trajectories. This will be discussed
in detail in the following section.

III. ALGORITHM

This section presents the algorithm that addresses the
problem described in Section I. Figure 1 shows a block
diagram of the pipeline, which can be summarised by the
following points:

• Consider a robot traversing through an environment.
• Initially, as the robot moves, the state of the robot is

grouped into clusters according to its position, orienta-
tion and speed.

• As the robot continues to move, a transition condition
continuously checks whether the state still belongs to



that cluster.
• If not, on transitioning the trajectory is segmented and

the resulting segment is processed in order for the
motion primitive to be extracted.

• After extraction, the class of the primitive is determined
and the motion library is updated.

Based on the pipeline above, when the robot is given a
goal in space, a motion primitive can be retrieved from the
motion library and the trajectory can be reconstructed for the
goal to be reached.

A. State Definition

x
y

Fig. 2. Overview of the symbols used in this paper. The robot is marked
by the black rectangle. Blue lines correspond to motion primitives. Red dots
and ellipses mark the cluster mean and covariance respectively. The green
arrows indicate the transition points of the segmentation algorithm.

The state of the robot is defined as by

⇣t =
⇥⌦

xp, yp, zp
↵
, hwo, xo, yo, zoi ,

⌦
€xp, €yp, '

↵⇤T (1)

where
⌦
xp, yp, zp

↵
denote the current position in world

coordinates, hwo, xo, yo, zoi the current orientation and⌦
€xp, €yp, '

↵
the current velocity in the robot frame, with '

being the steering angle for car-like robots. The velocity state
consists of controllable inputs for ground robots. For the case
of non-holonomic robots, €yp = 0.

B. Automatic Trajectory Segmentation
The trajectories are essentially a stream of states ⇣t at

discrete time intervals �t. This allows for the use standard
techniques to calculate the mean and covariance of the
incoming states in an online fashion.

1) State Clustering: The clustering is initialized with the
initial mean being the first state ⇣0 and covariance matrix
being the identity matrix scaled by an initial variance �2.

µ⇣,0 = ⇣0 ⌃⇣,0 = �
2I (2)

As more state data come in, this distribution is updated
according to

µ⇣,t+1 =
1

w⇣,t + 1
�
w⇣,t µ⇣,t + ⇣t+1

�
(3)

⌃⇣,t+1 =
w⇣,t

w⇣,t + 1⌃⇣,t

+
w⇣,t

(w⇣,t + 1)2
�
⇣t+1 � µ⇣,t+1

� �
⇣t+1 � µ⇣,t+1

�T (4)

In this case w⇣,t is the weight factor which is simply the
sample count.

w⇣,t+1 = w⇣,t + 1 w⇣,0 = 1 (5)

The state clustering is therefore effectively an implementa-
tion of Welford’s algorithm [23].

2) Transition Condition: In order to achieve trajectory
segmentation each new sample needs to be checked against
a transition condition. In case the sample still belongs to the
current cluster it is merged into that cluster, otherwise the
trajectory is segmented and a new cluster initialized.

To detect a transition, we exploit the fact that a cluster
can be well represented by a multivariate Gaussian distri-
bution, as illustrated in Figure 2. This means that standard
techniques like conditioning [24] are applicable. The mean
and covariance can be divided into their position, orientation
and velocity components:

µ⇣ =

266664
µp
µo
µv

377775
⌃⇣ =

266664
⌃pp ⌃po ⌃pv
⌃op ⌃oo ⌃ov
⌃vp ⌃vo ⌃vv

377775
(6)

Conditioning the position distribution on the current orien-
tation and velocity is therefore done by

µp = µp +
⇥
⌃po ⌃pv

⇤
·

⌃oo ⌃ov
⌃vo ⌃vv

��1 ✓ 
⇣o
⇣v

�
�

µo
µv

� ◆
(7)

⌃p = ⌃p �
⇥
⌃po ⌃pv

⇤
·

⌃oo ⌃ov
⌃vo ⌃vv

��1 
⌃op
⌃vp

�
(8)

This yields the conditional distribution N
⇣
µp, ⌃p

⌘
for the

position. The conditional distributions for the orientation
N

⇣
µo, ⌃o

⌘
and the velocity N

⇣
µv, ⌃v

⌘
can be found in the

same way.
For the position the Euclidean distance is an intuitive

measure, therefore the distance between the position sample
and the conditioned mean is thresholded using dE

p,max .

dE
p =

q
(xp � µp)T (xp � µp) < dE

p,max (9)

For quaternion distributions the Mahalanobis distance is a
better choice as a distance measure because it is unitless
and scale-invariant, which suits well for unit quaternions.
The intuition behind the Mahalanobis distance is that it
grows as the sample point moves away from the mean along
each principal component axis. The threshold dM

o,max to be
checked is therefore with regards to the squared Mahalanobis
of the orientation sample to the conditioned distribution.

dM
o = (xo � µo)T⌃

�1
o (xo � µo) < dM

o,max (10)

The choice of dE
p,max and dM

o,max is done empirically. Typical
values for a car-like vehicle are dE

p,max = 8.0 m and dM
o,max =

⇡. These limits provide a suitable set of motion primitives
for the size of the test vehicle presented in Section V-A.



3) Algorithm for Automatic Trajectory Segmentation: The
full procedure for automatic trajectory segmentation is shown
in Algorithm 1.

Algorithm 1: Automatic Trajectory Segmentation
Data: robot state ⇣
Result: transition, trajectory segment

1 if first robot state then

2 initialize µ⇣ = ⇣, ⌃⇣ = �2I
3 else

4 check if state still belongs to the cluster
5 if state belongs to cluster then

6 updateCluster();
7 else

8 return transition + trajectory segment;

9 return no transition;

C. Motion Primitives
The resulting trajectory segment is re-sampled to T dis-

crete time-steps before being converted to the motion prim-
itive representation. In addition, instead of using the time t
as index variable, the phase variable z(t) is introduced.

z(t) = t � t0
tmax

(11)

This ensures that the trajectory segments correspond to T
discrete time-steps that are uniformly distributed between 0
and 1. The actual re-sampling process is done using linear
interpolation for each state dimension separately.

The representation chosen for the motion primitives are
probabilistic movement primitives (ProMPs) [25]. ProMPs
offer useful properties that can be exploited later on when
building the motion library and reconstructing trajectories,
such as conditioning, product of Gaussians as well as a mean
and covariance.

The probabilistic movement primitives rely on a basis
function, for which a Gaussian radial basis function [26] was
chosen in this paper, represented as

�k(z(t)) =
exp

⇣
� 1

2 (z(t) � µk)��1(z(t) � µk)
⌘

p
(2⇡)D�

, (12)

where µk are the means of the K components that are
uniformly spread between 0 and 1. � is the variance and
can be chosen freely. The basis function is used to compute a
matrix � that is later used for regression. Since all parameters
can be set without prior knowledge, this matrix can be
precomputed. For T time-steps and D dimensions, this yields
a matrix � 2 RDT⇥DK .

� =

2666664

I�1(z1) . . . I�K (z1)
...

. . .
...

I�1(zT ) . . . I�K (zT )

3777775
(13)

Given a single trajectory segment the weights can be cal-
culated by solving equation (14) which is a standard Ridge

regression [27] with the regularization factor � being chosen
very small, mainly for avoiding computational underflow.

ww = (�T� + �I)�1�T ·
⇥
⇣T0 . . . ⇣TT

⇤T (14)

The construction of the motion library is the problem of
efficiently storing and merging the identified motion primi-
tives while making the retrieval fast. Keeping all primitives
in memory is not feasible from a storage point of view
and make searching for a specific primitive computationally
expensive.

For car-like robots two distinct and evident classes of
motion primitives have been chosen: forwards and backwards
driving. This choice reduces the problem to a simple binary
classifier, with the y-z-plane as a boundary.

In order to integrate identified motion primitives into
the motion library the fact that the motion primitives are
represented by high-dimensional multivariate Gaussians can
be exploited. For the merging this means another application
of Welford’s algorithm, i.e. equations (3) and (4), to the
mean µw and covariance ⌃w of the weight vector from
Equation (14) that is identified for each trajectory segment.
This makes the motion library a collection of multivariate
Gaussian distributions of weights over the basis function,
one for each class of motion primitives, as shown in Equa-
tion (15).

p(ww |class) = N (µw, ⌃w |class) (15)

Reconstruction of a motion can be done via conditioning
the distribution using the desired end state ⇣⇤T of a trajec-
tory [8]. The same can be done for any state ⇣⇤t along the
trajectory. The conditioned distribution N

⇣
µw, ⌃w |⇣⇤t

⌘
can

be determined using (16) and (17):

µw = µw + ⌃w�(�T⌃w�)�1(⇣⇤t � �T µw) (16)

⌃w = ⌃w � ⌃w�(�T⌃w�)�1�T⌃w (17)

The full algorithm for building the motion library is outlined
in Algorithm 2. It requires a trajectory segment as an input
that can either be precomputed using the robot’s kinematics
model or identified from driving data.

Algorithm 2: Building the Motion Library
Data: trajectory segment
Result: updated motion library

1 re-sample trajectory segment
2 transform t into z(t), interpolate to get T steps

3 extract motion primitive
4 use equation (14)

5 determine primitive class
6 xT < 0 or xT > 0
7 update motion library
8 use equations (3) and (4)



Since the output of the reconstruction step is a trajectory,
any trajectory following controller [28] can be used to
execute it.

IV. THEORETICAL MOTION PRIMITIVES

This section provides insights into application of the
algorithm to the forward kinematics of a car-like robot,
illustrating the theoretical distribution of motion primitives.

The movements of a robot can be described using a
simplified kinematics model. This model considers the inputs
(i.e. linear velocity) and calculates the current state of the
robot. The considered robot is a car-like platform (i.e., non-
holonomic), which can be described by the kinematics model
shown in Equation (18) [29]. The inputs are the linear
velocity v and the steering angle '. L is the wheelbase of
the car-like robot.

266664
€x(t)
€y(t)
€✓(t)

377775
=

266664
v cos (✓(t))
v sin (✓(t))
v
L tan (')

377775
u =


v
'

�
(18)

By recursively calculating these equations and multiplying
with �t theoretical trajectories can be found, i.e. x(t + 1) =
x(t) + €x(t)�t. Feeding those trajectories to Algorithm 1
and using the limits set in Section III-B.1 resulted in the
theoretical trajectory segments shown in Figure 3 (in this
figure, �t = 0.1 s)

x[m]

y[
m

]

Fig. 3. Theoretical trajectory segments calculated using a car-like kine-
matics model, a linear velocity input of v = 1.0 and a steering angle of
' 2

⇥
� ⇡

4 ,
⇡
4
⇤

with 100 discrete steps was used. The mean and covariance
of the resulting distribution are marked in red and green, respectively.

When merging the theoretical primitives for car-like robots
into their respective classes to create the distributions as
shown in Figure 3 the two distinct classes forward and
backward driving can clearly be seen.

In this section a theoretical distribution of movement
primitives has been computed. The experiments in the next
section will show the applicability and generalization capa-
bilities of this distribution to real world trajectories.

V. EXPERIMENTS

This section presents experiments showing the trajecto-
ries generated and subsequent robotic operation using the
proposed method. The results show the generalisation of
the theoretical movement primitive distribution to real world
applications.

A. Test Setup
For our experiments, the test area is a large industrial site

(partially shown in the satellite image in Figure 5a). The area
includes a road network with variable speed limits (some
roads are designated to normal cars and some to industrial
machinery), open and narrow spaces, flat and steep/hilly
surfaces (both on-road and on off-road areas surrounded by
large buildings or bush land). An artificial tunnel environ-
ment is also part of the site. Therefore, the site offers great
variations, making for an ideal testing environment for the
method proposed.

Fig. 4. Robotic platform used for testing is an automated John Deere Gator
at the CSIRO’s QCAT research facility.

The test platform is a car-like robotic vehicle (Figure
4), a John Deere TE Gator that has been automated at the
CSIRO. It is 3.5 m long and 2 m wide. For the identification
of the movement primitives, the vehicle is modeled as an
Ackermann steering platform. Hence, the control inputs are
linear velocity and steering angle. The maximum linear
velocity €xmax ⇡ 7 m s�1 with a total mass of about 800 kg.
The steering angle ' is in the range ' 2 [�⇡/4, ⇡/4].

The eMP code has been implemented using C++14 and
the Armadillo C++ library for linear algebra & scientific
computing [30] was used for the matrix calculations. The
robot used for experiments was running ROS Melodic [31]
and Ubuntu 18.04 on a standard computer. Equipped with
a 3D Velodyne VLP-16 lidar, the robot is localised against
the environment using Posemap [32] and a continuous-time
SLAM implementation [33], [34].

B. Test Results
Figure 5a shows an overview of the whole test site

including a human-driven trajectory. This trajectory is over-
layed with the reconstructed trajectory using the identified
transition points. The motion library used for reconstruction
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(a) Human-driven and reconstructed trajectory overlayed on the test site.
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(b) Velocity profile of the driven trajectory over the phase variable z(t).
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(c) Height profile of the driven trajectory over the phase variable z(t).
Fig. 5. Test site with trajectory and corresponding velocity and height
profiles. The green arrows and circles mark the transition points. The red
and blue ones correspond to the human-driven and reconstructed trajectories,
respectively.

is derived from the theoretical motion primitives as shown
in Section IV. This clearly shows that the theoretical model
generalizes well to real world applications. The most signif-
icant benefit, though, lies in the velocity profile shown in
Figure 5b. It shows that the reconstruction is also capable
of following the human driving behaviour, thus implicitly
incorporation human preferences in the environment without
an explicit model. It should also be pointed out, that planning
is done in three spacial dimensions as can be seen from the
corresponding height profile shown in Figure 5c.

Figure 6a shows a human-driven trajectory down the slope
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]

(a) Human-driven trajectory on the test site overlayed with the reconstructed
trajectory.
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(b) Velocity profile of the driven trajectory over the phase variable z(t).
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(c) Height profile of the driven trajectory over the phase variable z(t).
Fig. 6. Trajectory over a steep hill with the corresponding velocity and
height profiles. The green arrows and circles mark the transition points.
The red and blue ones correspond to the human-driven and reconstructed
trajectories, respectively.

of a hill. This is a particularly relevant example as that
road is very gravelly and therefore leads to slippage, hence
illustrating well the adaptability of the method.

In Figure 7 the extracted motion libraries for specific
regions (road, hill, industrial) is shown as trajectories and
their corresponding velocity profiles. It can be seen that
the rough terrain of hill causes the motions to be shorter
than for road and the industrial area, whereas they mostly
differ in their velocity profile. This therefore captures the
site regulations of the speed limit.



(a) Industrial area. (b) Offroad Hill. (c) Road.

(d) Industrial area. (e) Offroad Hill. (f) Road.

Fig. 7. Primitive weight distributions for specific situations and selected dimensions. For each dimension the different weights correspond to the K
components of the basis function.

VI. CONCLUSION

This paper presented results of extraction of effective
movement primitives that captures the movement limitations
added by the environment implicitly by processing a set
of human executed task trajectories that can be utilised to
create a library of terrain specific movement primitives for
autonomous navigation. It showed a method to automatically
segment a vehicle trajectory and represent those segments
in the form of movement primitives that are merged into a
motion library. Feasible trajectories can be retrieved from
the library and executed on the robotic vehicle, such that the
vehicle moves efficiently and adequately in the environment.
The paper has covered how to use a kinematics model to
compare the prior knowledge of the robot’s movements with
data acquired from driving in an unknown environment. The
system is also capable of acquiring driving data and in an
online fashion extracting movement primitives from the data.
Therefore, it allows for immediate adaption to unforeseen
events such as damage to the robot that influences its motion
behaviours without fully incapacitating it.

eMP has shown to be capable of incorporating human
driving behaviours into the planning of high-dimensional
global trajectories.

Future work will include planning trajectories with ac-
quired effective movement primitives in a local sense that
also incorporates information about the local environment
such as obstacles, roughness and inclines.
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