
PaintPath: Defining Path Directionality in Maps for Autonomous
Ground Vehicles

Riley Bowyer1, Thomas Lowe1, Paulo Borges1, Tirthankar Bandyopadhyay1, Tobias Löw1,2, David Haddon1

Abstract— Directionality in path planning is essential for
efficient autonomous navigation in a number of real-world
environments. In many map-based navigation scenarios, the
viable path from a given point A to point B is not the same
as the viable path from B to A. We present a method that
automatically incorporates preferred navigation directionality
into a path planning costmap. This ‘preference’ is represented
by coloured paths in the costmap. The colourisation is obtained
based on an analysis of the driving trajectory generated by
the robot as it navigates through the environment. Hence,
our method augments this driving trajectory by intelligently
colouring it according to the orientation of the robot during the
run. Creating an analogy between the vehicle orientation angle
and the hue angle in the Hue-Saturation-Value colour space,
the method uses the hue, saturation and value components to
encode the direction, directionality and scalar cost, respectively,
into a costmap image. We describe a costing function to be used
by the A* algorithm to incorporate this information to plan
direction-aware vehicle paths. Our experiments with LiDAR-
based localisation and autonomous driving in real environments
illustrate the applicability of the method.

I. INTRODUCTION

Path planning is an essential element of autonomous
vehicles. It defines, according to arbitrary criteria, the optimal
(or near-optimal) path that a vehicle should follow to go
from a starting point to an end-goal. In practice, the task is
usually achieved by considering two main elements, namely
global path planning and local path planning. The global plan
provides the full and overall path based on a known map M
of the environment, with the assumption that the world is
static. As the vehicle moves through the global path, it often
encounters moving obstacles or changes in the world (as
identified by its on-board sensors) that were not originally
incorporated in M. The local planner ideally avoids such
obstacles and adapts the vehicle’s path causing it to deviate
from its original plan, however aiming to return to the global
path as soon as the environmental circumstances allow.

Most traditional path planning algorithms are suited to
scenarios in which the cost of travel is independent of the
direction of travel. In other words, the path planned to go
from a point A to a point B is identical to the path from B

to A. In most practical applications, however, discriminating
the direction of travel is key to successful operations. On
urban networks, for example, there exist a number of rules
regarding lane directionality in both one-way and two-way

1Robotics and Autonomous Systems Group, Data61, CSIRO, Brisbane,
Australia

2Multi-Scale Robotics Lab, ETH Zürich, Zurich, Switzer-
land,(tobias.loew@alumni.ethz.ch)

{First.LastName}@csiro.au

roads. Not respecting those rules can obviously lead to
accidents. Challenges also exist in 3D off-road terrains,
where a vehicle is able, for instance, to go downhill but not
uphill on a given slope. In industrial areas or plants, there are
frequently traffic rules for machinery (e.g., forklifts, trucks)
and pedestrian areas. A strategy to efficiently incorporate
many of those directionality constraints in a map is the core
contribution of this paper.

As mentioned, global planners operate on a known map
M. When navigating through M the vehicle navigates only
through areas that are feasible, either because of physical or
legislation constraints. Based on this inherent characteristic
of how/where vehicles must travel, we present a novel
method to extract information from the vehicle trajectory
(assuming the vehicle has a localisation system that pro-
vides such trajectory) to incorporate preferred directionality
into the maps. A key challenge lies on how to effectively
represent the directionality in a way that can be both mathe-
matically interpreted by the path planning algorithm but also
intuitively understood by human observers of that map.

As two-dimensional path planning algorithms for ground
vehicles often analyse the costmap represented in an image
data structure, the gist of the proposed method is to represent
directionality as different colours in a map. The method,
coined PaintPath, colours traversed paths according to the
two-dimensional orientation of the sensor during navigation,
where the orientation can be in the range [0, 2⇡]. This colour
encoding is done in the HSV colour space, in which the hue
(H) component also has a circular representation falling in
the range [0, 2⇡]. The concept is illustrated in Figure 1, where
a costmap is coloured according to traversed directions.

Hence, the hue can be used as rule for in which direction
a vehicle should go when traversing through a path. In
addition, in order to bring representation completeness to
PaintPath, we also use the saturation (S) and value (V)
components. The saturation defines how important direction-
ality is in a particular path (e.g., there are areas in which a
vehicle can go in both directions without consequences and
other areas where it is absolutely forbidden to go in a given
way). A low directionality importance is illustrated in the
‘whitish’ path segments in Figure 1c. In those segments, the
vehicle traversed in multiple directions, therefore indicating
the ‘two-way’ nature of that path, consequently lowering
the saturation. Finally, the value component represents the
overall cost in the map, incorporating obstacles (i.e., a low
value shown in black represents an obstacle).

For planning on the coloured representation, we have mod-

(a) (b) (c) (d)

Fig. 1: Illustration of the PaintPath hue mapping. Figure (a) shows the HSV hue associated to vehicles travelling in different
directions. Those direction hues are painted onto the vehicle paths, as conceptually depicted in (b). The paths are transferred
to a real map (c), where all the coloured paths were traversed by the vehicle. Figure (d) is the satellite image of the costmap
given in (c), shown only for reference. Please note that this figure is only illustrating the ‘hue’ component of the algorithm.
The role of the other elements (saturation, value) are discussed in detail in Section III.

ified an A* algorithm such that the mathematical formulation
incorporates the ‘HSV’ costs in the optimisation, rather than
only the free vs non-free space cost. The proposed method
adds minimal computational effort to the map generation
process. Regarding planning, it increases the computational
complexity depending on the number of colour channels con-
sidered (the planner analyses three colour channels instead
of one).

We present experiments in multiple scenarios illustrating
the applicability of the method for ground vehicle navigation.
Although PaintPath is not constrained to any specific local-
isation system or sensing modality, in our experiments we
use a LiDAR-inertial algorithm based on the continuous-time
SLAM implementation [1], as it is suitable for autonomous
vehicle operation environments [2].

This paper is organised as follows. In Section II we review
relevant literature, contrasting with the proposed method. In
Section III we detail PaintPath. In Section IV we present a
number of experiments illustrating the applicability of the
method followed by relevant conclusions in Section V.

II. LITERATURE REVIEW

A common problem decomposition for large scale un-
manned ground vehicles (UGVs) is the breakdown of a high
level global planner with simplified vehicle characteristics
that prescribes a path to follow and a local planner that
executes the path as best as it can, incorporating more
realistic vehicle model, terrain traction constraints, and non-
holonomic and steering constraints. The local planner also
responds to local obstacles and other real time sensory
feedback. Here we focus on the large scale global planning
rather than local planners.

Due to the nature of traffic, directionality in path planning
is critical for self driving cars. The directionality constraints
in such scenarios are encoded as a directed graph represen-
tation with edge weights and an optimal path is found by

running a minimum cost path search on such road networks
[3]. At a street level scale, road lane graphs are utilised to
guide the self driving vehicle on the directionality of motion.
These lane graphs are partially algorithmically generated
from higher-level street network map and partly human
edited [4]. These approaches soon become intractable in
semi-structured and un-structured environments.

For unstructured rough terrains, the most popular approach
is to generate a costed grid map, run A* [5] or Dijkstra’s
algorithm [6] on the maps for the global path and run
more sophisticated model based local planners for online
adaptation.

Often due to the simplification of real constraints and
the abstraction of the problem, the prescribed global path
generates paths that the local planner is unable to execute. An
example is the terrain influenced by directionality constraints.
As an example, the vehicle control and traction might only
allow the vehicle to go in one direction, however getting
stuck or losing traction in other directions from the same
position.

Global navigation functions [7] are able to encode direc-
tionality into the map. Often this requires formulating a cost
or a value function over the map that is then used to generate
a navigation policy at each position. However, coming up
with such cost functions is challenging as the contributors
to the costs are always not measurable (effect of traction in
mobility) and have coupled non-linear effects.

Beyond grid based formulation, some approaches try to
solve the full 3-D problem by combination of RRT* [8]
and local trajectory optimisation that incorporates 3D ter-
rain shape and kinematic vehicle constraints purely on 3D
pointclouds [9], or a variant in 2.5D simplification as DEM
(elevation maps) [10], [11]. Approaches with simplification
of meshes have also been proposed [12], [13]. Direction
dependent tip over constraints has been considered in [14].
In most of these approaches, directionality is not explicitly

captured in the maps requiring an evaluation of a suitable
local trajectory at run-time, potentially leading to unsuitable
solutions.

Integrating non-holonomic constraints explicitly into the
poly-linear global path has been done by adapting to
smoothen a low dimensional path [15]. State Lattice plan-
ner for global path planning using rough terrain trajectory
generation for connecting states in lattice has also been
proposed [16], allowing for the incorporation of kinodynamic
constraints into the global paths.

Different representations of the map like isolines-based
maps [17] and modelling terrains as cubic B-Patches [18]
can be useful in a number of scenarios, however they only
capture the structure of the environment rather than the
traversability or directionality. It is also possible to observe
the flow of dynamic objects (e.g., people and other vehicles)
in the environment [19] to incorporate ‘directional flow’ in
the planning. However, this is a probabilistic process that
requires long term observation of the area.

Traversability approaches are either appearance based us-
ing combination of visual and laser sensor [20] or a scalar
binary or continuous value that is learned offline [21] or
online [22]. An A* or trajectory optimization planners like
Time Elastic Bands [23], RRT* or STOMP [24] is subse-
quently run on such maps to produce optimized paths. These
approaches are restrictive as traversability values do not often
capture the local dynamics in the surface patches. As an
example, traversability in one direction may be completely
different from another direction, especially in the case of
sloped surfaces. The component of directional dependent
traversability has not been explored significantly in the
literature.

To address the limitation of robust driving on challenging
terrains, analysis of expert human driven trajectories have
been explored. There has been work in learning from human
drivers and human GPS input for autonomous vehicles con-
trol and path planning. Learning steering function for vehicle
from human driver is explored by using neural networks [25]
and reinforcement learning [26]. Closest to our work is that
by Ziebart et al [27] and Choi and Kim [28], based inverse
reinforcement learning for learning taxi drivers preference for
road segments from GPS trace data. However there has been
limited work in modeling direction driven route preferences
in rough terrains and outside of road networks (e.g., plants,
private complexes, etc) from human drivers. This is the core
element that the PaintPath method addresses.

III. PROPOSED METHOD

In this section we explain in detail the PaintPath algorithm.
We also describe the concept of navigation map restriction,
which serves as a basis for PaintPath.

A. Map Restrictor
When navigating in pre-mapped areas to perform a given

task it is reasonable to assume that in many cases the most
desired path to be taken by the vehicle corresponds to a
previously traversed path. With this assumption, a path of

low cost can be added to a traditional costmap to encourage
a planner to follow previously driven routes. This strategy
relies upon the generation of a trajectory list in addition
to any other requirements for the generation of a costmap.
Biasing a planner to a previously driven path increases the
likelihood that an efficient and safe route is taken without
fully restricting the planners ability to deviate from the path.
However, this type of restriction suffers from naivety in
regards to direction. This naivety is illustrated in the exper-
iments in Figures 6 and 7. These figures demonstrate how
a costmap can be modified to give preference to previously
traversed routes. Throughout this paper, we refer to this path
biasing strategy as the ‘Map Restrictor’.

B. PaintPath
Standard costmaps are a scalar field representing the cost

of passing through each point in the field. Usually this field is
discretised as a two-dimensional or three-dimensional grid of
values. These values determine a cost of traversing the grid
cell and path planners then aim to minimise the integrated
cost along the path length.

There can be, however, an ambiguity in how these costs
are represented. A cost C in the range [0, 1]) {C 2: 0
C 1} has the disadvantage that any obstacle, no matter
how dangerous, can be traversed if the sum of costs along
the path (including the obstacle) is less than the cost for all
other paths. So instead, we represent the cost by a 0 to 1
‘utility value’, which is the reciprocal of cost. This allows
obstacles and solid road lines, for example, to be absolutely
untraversable (infinite cost), and it means terrain never has
zero cost, so there is always a unique minimal cost path1.

For many driving tasks, the direction of travel needs to
be encoded in the map so that, for instance, the planned
path does not guide the vehicle into oncoming traffic. This
requires a vector-field costmap which in two-dimensions can
be discretised into an image of vector-valued pixels.

In PaintPath the directional ‘utility value’ is calculated
from the dot product (·) of the candidate vehicle direction
vector with the per-pixel colour vector, resulting in a signed
value in the range of [�1, 1]. However, as the utility value
would desirably be in the range [0, 1], the constant 1 is added
to the dot product and the resulting value is divided by 2.
An advantage of the dot product is that the resulting cost
is linear on the input data. This is relevant as the colour
map can be derived from multiple driving paths over the
environment, and linearity ensures that such averaging of
the colour vectors corresponds to an average of the cost of
those vectors.

We use the HSV colour space, depicted in Figure 2, for
the images, where hue H represents the intended driving
direction, saturation S defines the directionality weight and
value V represents the overall cost C of the cell. For a given
candidate direction d the cost is

C =
1

V
+

2

S(1 + (sinH, cosH) · d) (1)

1Strictly, there can be a finite number of minimal cost paths, but with
vanishing probability.

(a) (b)

Fig. 2: Illustration of the HSV colour space. Figure (a) details
the traditional representation with hue, saturation and value.
Figure (b) relates this colour space to the variables used in
the descriptions in this work.

This is a conical subset of a vector space, where black
represents the highest cost (regardless of the direction of
travel), and white represents the lowest cost. A bright colour
represents the lowest cost when travelling in the direction
corresponding to the colour’s hue. This choice fits the driving
task as the highest cost areas (obstacles) are high cost
regardless of the approach direction, but the lowest cost areas
(roads, open fields, and other vehicle operation areas) are the
ones where directionality may be relevant.

In addition to loosely constraining the direction with the
hue vector, we can more strictly constrain the drive direction
using the value component V . As the environment is mapped,
obstacles are marked as black (full cost), all remaining areas
are marked as grey (medium cost). The driven trajectories
are coloured according to the drive direction, and the colour
interpolates to the default grey colour with distance from the
trajectory path. This creates a set of softly bounded routes
to constrain the driving direction.

In an omnidirectional area such as a compound or car park,
the average of multiple drive passes over the same path in
different directions creates an averaged white colour (Figure
3). This is brighter than the grey used as the non-obstacle
default, which means that vehicles will still prefer to drive
on the areas that were covered by vehicle traversals with no
additional directional cost. It does not necessarily, however,
forbid the vehicle to navigate to grey areas, as the system
can be parameterised to only give less preference to grey,
but not to avoid it completely in case a goal sits in one of
that region.

C. Why use HSV?

Being a cone colour space, HSV allows direct mapping
of directionality (Hue), directional certainty (Saturation) and
obstacles (Value) in a format that is interpretable and editable
by human operators. The addition of an obstacle layer allows
the biasing of the planner to previously driven paths but
does not restrict the planner to these paths. The use of not
only direction, but also directional certainty, addresses the
ambiguity of intersecting paths and bidirectional travel.

(a) (b)

(c)

Fig. 3: In this figure (a) illustrates a sample vehicle trajectory
with reference frames drawn at different poses. (b) shows
how the directions in (a) relate to different colours. (c) details
how the gradual colouring from the centre of the path to the
background colour. The merge weight decreases from the
pose centre to the maximum distance r.

D. Implementation

A simplified description of the implementation is shown in
Figure 4. To provide the aforementioned smooth transitions
from colour saturated paths to the default background colour
and reduced saturation in bidirectional areas, two major
processing steps must be completed: (i) the inflation of the
trajectory and (ii) the averaging of colours. To create the
smooth transition, a linearly decreasing ‘merge weight’ ↵

ranging from 1 to 0 gradually reduces the saturation of
the path. ↵ is parameterised according to the maximum
distance r from the centre of the trajectory T , as illustrated
in Figure 3. The direction of travel ✓ is extracted from T
and used to calculate a colour representation vector cn for
each point within the distance r from the central pose. Let

x = cos ✓

y = sin ✓

z = 1

↵n = 1� Distance From Pose
r

cn = (x, y, z)

(2)

Fig. 4: Simplified description of trajectory processing. Poses
are extracted from the trajectory before being inflated as de-
scribed in Figure 3. For each point within this inflated pose,
a colour vector cn is calculated following the equations in
(2). These vectors are subsequently averaged using equations
(5) and (6). The resulting values for each pixel are converted
to HSV (equation (7)), before being written out for use as a
costmap in planning.

As there can be multiple vectors per pixel, an index n is
assigned to each to distinguish between them. To effectively
average the generated list of colours and produce desaturated
colours in bidirectional areas, a weighted sum of the vectors
generated from T and the background colour is computed.
By averaging the x and y components of the colours rather
than the direction, the saturation of the final colour can
be reduced if the summed components act in opposite
directions. In addition, by averaging the z components, a
smooth transition to the background colour can be achieved.
cBackground is defined as the vector containing the desired
background colour (for example, if the desired background
colour is grey, the vector (0, 0, 0.7) could be used). Let

! = max(↵0,↵1, . . . ,↵N) (3)

and

!0 =

n=NX

n=0

↵n (4)

where N is the value of the largest index for that pixel.
Based on the equations above, an averaged vector cAverage =

(xAvg, yAvg, zAvg) for each pixel in the image can be calcu-
lated. cAverage is defined as

cAverage = cSum · ! + cBackground ·max(0, 1� !0) (5)

where

cSum =
(
Pn=N

n=0 ↵n · cn) + cBackground ·max(0, 1� !0)

!0 +max(0, 1� !0)

(6)
This vector cAverage is then converted back to the HSV colour
space according to

H = arctan
yAvg

xAvg

S =

q
x
2
Avg + y

2
Avg

V = zAvg

(7)

The resulting HSV values are incorporated into the costmap
for use in path planning.

IV. EXPERIMENTS

In this section we describe details of our hardware and
software implementation followed by experimental results.
We show a number of scenarios comparing PaintPath with
standard costing approaches, illustrating the applicability of
the method.

A. Hardware and Software Setup
Although our algorithm is not restricted to any specific

type of localisation strategy, in our experiments we use
LiDAR-intertial mapping, using the CSIRO SLAM algo-
rithm [1], [2]. The sensors consists of a a Velodyne PUCK
VLP-16 LiDAR and a Microstrain-CV5- IMU. The LiDAR
assembly is additionally mounted on a spinning base, angled
at 45

� for increased point coverage [2] (Figure 5). The
spinning base rotates at approximately 0.5Hz and LiDAR
measurements are streamed in at 20Hz.

In the autonomous vehicle experiment, a John Deere TE
Electric Gator automated by CSIRO [29] was used as the test
platform. The LiDAR mounted at a height of 1.88m above
the robot frame, as illustrated in Figure 5.

The system was implemented in C++ using ROS [30],
running on a LGA1151 CPU2.8GHz and 64GB of RAM.

Fig. 5: Illustration of the test vehicle.

B. Results
Three main scenarios were chosen to evaluate and illus-

trate the differences in behaviour between PaintPath, Map
Restrictor, and Traditional Costing. The scenarios include a
variety of typical road networks, industrial areas, and off-
road environments. Traditional Costing, in this case, refers
to the free versus non-free binary costmap representation.

Scenario #1, depicted in Figure 6, shows a laned roadway
with a goal point G placed approximately 50 meters away
from the starting point S. The shortest path to the goal,
however, goes in the opposite direction of travel according to
site rules. When direction is not important, a short direct path
is desirable as shown by the paths created by ‘Traditional
Costing’ and Map Restrictor. If direction is important, the
path taken with PaintPath, although significantly longer (as
it performs a full-loop), obeys the encoded rules of direc-
tionality, always remaining on the left hand side of the road.

Scenario #2, shown in Figure 7, demonstrates similar
results with both the paths taken by Map Restrictor and
Traditional Costing violating traffic rules. In contrast, the
route taken by PaintPath is significantly longer but adheres
to these rules. The difference between Map Restrictor and
Traditional Costing is highlighted in this scenario. The path
taken by the Map Restrictor can be seen to be much smoother
and closely follows the previously driven route, being a
known plausible path.

Scenario #3, shown in Figure 8, consists of a very sloped
off-road area. When considering how to traverse up a slope,
the desired path is often indirect, following a shallower
ascent. Scenario #3 (a) demonstrates both the paths taken by
Map Restrictor and PaintPath following a safe route encoded
by past experience, following a shallow gradient. In contrast
the route taken by traditional costing directs the vehicle into
the steepest section of the slope, placing the vehicle at risk
of rolling. A secondary feature of off-road environments is
that paths are often one directional. This characteristic is
represented by both Map Restrictor and PaintPath again,
allowing the vehicle to traverse down the slow and along
a flat section of path rather than placing the vehicle at risk
by moving along the slope.

Please note that in all figures showing trajectories in
the experiments, the inverse colour is being displayed for
visualisation purposes.

C. Computational Complexity
The computational complexity of the approach is split into

two parts. Table I shows the computing times for generating
the required costmaps for the different scenarios. Table II
shows the times for computing the resulting trajectories. All
the results were computed on a E5-2543 v3 CPU3.4GHz and
126GB of RAM. It can be seen in Table I that the additional
time utilised in the inclusion of a coloured path is dependent
on the size of the map and the number of trajectory points.
This time can be seen to vary from approximately 1.8� 3.5

times the time needed for an uncoloured map. Table II shows
the time cost of performing additional costing functions in
the A* algorithm. However, it is important to note that
times cannot be directly compared, but must be considered
alongside the trajectory length.

V. CONCLUSIONS

We have presented a novel and efficient method to incor-
porate directionality in costmaps. The PaintPath technique is
applicable to map-based navigation, being particularly useful
in areas which require autonomous navigation in a known
map. The fundamental idea is to associate directionality in
vehicle travel to directionality in the HSV colour space,
using past travel direction to colourise the costmap, which,
once colourised, is embedded with direction preference. We
have presented a number of experiments showing situations
in which PaintPath allows for proper path planning while
standard binary costmaps would fail. Future work will extend
the fundamental method to incorporate online adaptation and
updating of the preferred path map as long-term navigation

is performed after the initial map is created. Finally, the
directionality concept can be extrapolated to include any
other information from the trajectory into the map, such
as velocity, acceleration, or any other arbritary state or
behaviour of the vehicles.

REFERENCES

[1] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning
2d laser,” in Robotics and Automation, 2009. ICRA’09. IEEE Interna-
tional Conference on. IEEE, 2009, pp. 4312–4319.

[2] P. Egger, P. V. K. Borges, G. Catt, A. Pfrunder, R. Siegwart, and
R. Dubé, “Posemap: Lifelong, multi-environment 3d lidar local-
ization,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 3430–3437.

[3] K. S. Oberoi, G. DEL MONDO, Y. Dupuis, and P. Vasseur,
“Spatial Modeling of Urban Road Traffic Using Graph Theory,”
in Proceedings of Spatial Analysis and GEOmatics (SAGEO) 2017.
Rouen, France: INSA de rouen, Nov. 2017, pp. 264–277. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01643369

[4] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, March 2016.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 7
1968.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[7] S. M. LaValle, Planning Algorithms. USA: Cambridge University
Press, 2006.

[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, 2011. [Online]. Available:
https://doi.org/10.1177/0278364911406761

[9] P. KrÃŒsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on
point clouds: Motion planning, trajectory optimization, and terrain
assessment in generic nonplanar environments,” Journal of Field
Robotics, vol. 34, no. 5, pp. 940–984, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21700

[10] G. Ishigami, M. Otsuki, and T. Kubota, “Range-dependent terrain
mapping and multipath planning using cylindrical coordinates
for a planetary exploration rover,” Journal of Field Robotics,
vol. 30, no. 4, pp. 536–551, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21462

[11] K. Iagnemma, F. Genot, and S. Dubowsky, “Rapid physics-based
rough-terrain rover planning with sensor and control uncertainty,” in
Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), vol. 3, May 1999, pp. 2286–2291
vol.3.

[12] I. Rekleitis, J.-L. Bedwani, E. Dupuis, T. Lamarche, and P. Allard,
“Autonomous over-the-horizon navigation using lidar data,” Auton.
Robots, vol. 34, no. 1–2, p. 1–18, Jan. 2013. [Online]. Available:
https://doi.org/10.1007/s10514-012-9309-9

[13] F. Ruetz, E. Hernández, M. Pfeiffer, H. Oleynikova, M. Cox, T. Lowe,
and P. Borges, “Ovpc mesh: 3d free-space representation for local
ground vehicle navigation,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 8648–8654.

[14] A. Shum, K. Morris, and A. Khajepour, “Direction-dependent optimal
path planning for autonomous vehicles,” Robotics and Autonomous
Systems, vol. 70, pp. 202 – 214, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889015000214

[15] I. Arvanitakis, A. Tzes, and M. Thanou, “Geodesic motion planning on
3d-terrains satisfying the robot’s kinodynamic constraints,” in IECON
2013 - 39th Annual Conference of the IEEE Industrial Electronics
Society, Nov 2013, pp. 4144–4149.

[16] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in Proceedings of The 8th International
Symposium on Artificial Intelligence, Robotics and Automation in
Space, September 2005.

[17] D. Gaw and A. Meystel, “Minimum-time navigation of an unmanned
mobile robot in a 2-1/2d world with obstacles,” in Proceedings. 1986
IEEE International Conference on Robotics and Automation, vol. 3,
April 1986, pp. 1670–1677.

Scenario # Image Size Number of Trajectories Coloured Map (s) Traditional Map (s)
1 4072⇥4886 7195 617.16 374.35
2 10358⇥14096 15510 2555.33 754.94

3 and 4 1954⇥2419 1142 107.53 36.4

TABLE I: Computing time taken to produce a coloured and traditional costmap seen in each test scenario. The image size
is given in pixels.

(a)

(b) (c)

(d) (e)

Fig. 6: Illustration of the varying paths generated in Scenario
1. Figure (a) shows the 3D pointcloud used to generate the
map used in Scenario #1. The vertical height is represented
by a grayscale gradient, black representing smaller values
and white representing larger. Figure (b) shows the processed
map used for planning, based on (a). Figure (c) through
(e) show Traditional Costing, Map Restrictor and PaintPath,
respectively, overlayed onto the value layer of the HSV
image. The keys S and G represent the starting point and
the end goal, respectively.

Scenario # Traditional (s,m) Map Restr. (s,m) PaintPath (s,m)
1 0.03, 51.63 0.04, 42.40 6.81, 732.07
2 0.05, 115.58 0.15, 121.18 2.75, 335.73
3 0.03, 49.29 0.05, 53.51 0.21, 53.82
4 0.03, 49.72 0.05, 53.62 0.22, 53.25

TABLE II: The time taken by the path planner to compute
the trajectories shown in each scenario discussed. Each entry
includes the time taken to compute the trajectory in seconds
(s), followed by the length of the trajectory in metres (m).

[18] Yi Guo, L. E. Parker, D. Jung, and Zhaoyang Dong, “Performance-
based rough terrain navigation for nonholonomic mobile robots,” in
IECON’03. 29th Annual Conference of the IEEE Industrial Electronics
Society, vol. 3, 2003, pp. 2811–2816 Vol.3.

[19] C. S. Swaminathan, T. P. Kucner, M. Magnusson, L. Palmieri, and
A. J. Lilienthal, “Down the cliff: Flow-aware trajectory planning
under motion pattern uncertainty,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 7403–7409.

[20] A. Howard and H. Seraji, “Vision-based terrain characterization and
traversability assessment,” Journal of Robotic Systems, vol. 18, no. 10,
pp. 577–587, 2001.

[21] S. Karumanchi, T. Allen, T. Bailey, and S. Scheding, “Non-parametric
learning to aid path planning over slopes,” The International Journal
of Robotics Research, vol. 29, no. 8, pp. 997–1018, 2010. [Online].
Available: https://doi.org/10.1177/0278364910370241

[22] A. Krebs, C. Pradalier, and R. Siegwart, “Adaptive rover behavior
based on online empirical evaluation: Roverâterrain interaction and
near-to-far learning,” Journal of Field Robotics, vol. 27, no. 2, pp.
158–180, 2010.

[23] C. Rösmann, F. Hoffmann, and T. Bertram, “Kinodynamic trajectory
optimization and control for car-like robots,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sep. 2017, pp. 5681–5686.

[24] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
2011 IEEE International Conference on Robotics and Automation,
May 2011, pp. 4569–4574.

[25] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural Computation, vol. 3, no. 1, pp. 88–97,
March 1991.

[26] M. Riedmiller, M. Montemerlo, and H. Dahlkamp, “Learning to drive
a real car in 20 minutes,” in 2007 Frontiers in the Convergence of
Bioscience and Information Technologies, Oct 2007, pp. 645–650.

[27] B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell, Navigate like
a Cabbie: Probabilistic Reasoning from Observed Context-Aware Be-
havior. New York, NY, USA: Association for Computing Machinery,
2008, p. 322–331.

[28] J. Choi and K.-E. Kim, “Bayesian nonparametric feature construction
for inverse reinforcement learning,” in Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, ser. IJCAI
’13. AAAI Press, 2013, p. 1287–1293.

[29] A. Pfrunder, P. V. Borges, A. R. Romero, G. Catt, and A. Elfes,
“Real-time autonomous ground vehicle navigation in heterogeneous
environments using a 3d lidar,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,
pp. 2601–2608.

[30] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

(a)

(b)

(c) (d)

(e) (f)

Fig. 8: Scenario #3 consists of very sloped terrain. Figure
(a) shows the map used for planning. Figure (b) illustrates
Traditional Costing and (c) shows the paths taken by both
Map Restrictor and PaintPath. Both (b) and (c) show the
path overlayed onto the value layer of the HSV image.
The keys S and G represent the starting point and the end
goal, respectively. In the opposite direction (i.e., S and G
are swapped), the path taken by PaintPath is different and
allows for a feasible route. The alternative path is illustrated
in Figure (f), while the Traditional Costing in (e) is very
similar to (b).

(a)

(b) (c)

(d) (e)

Fig. 7: Paths generated in Scenario 2. Figure (a) shows the
map used for planning. Figure (b) through (d) show Tradi-
tional Costing, Map Restrictor and PaintPath, respectively,
overlayed onto the value layer of the HSV image. The keys
S and G represent the start and end goals.

