Optimization-Based Terrain Analysis and Path Planning in
Unstructured Environments

Ueli Graf*" , Paulo Borges*, Emili Herndndez*, Roland Siegwart’, and Renaud Dubé’
*Robotics and Autonomous Systems Group, CSIRO’s Data61, Brisbane, Australia
Email: {Paulo.Borges, Emili.Hernandez} @data61.csiro.au
T Autonomous Systems Lab, ETH Zurich, Switzerland, Email: {grafue, rsiegwart, rdube} @ethz.ch

Abstract— Accurate environment representation is one of the
key challenges in autonomous ground vehicle navigation in un-
structured environments. We propose a real-time optimization-
based approach to terrain modeling and path planning in off-
road and rough environments. Our method uses an irregular,
hierarchical, graph-like environment model. A space-dividing
tree is used to define a compact data structure capturing
vertex positions and establishing connectivity. The same unique
underlying data structure is used for both terrain modeling
and path planning without memory reallocation. Local plans
are generated by graph search algorithms and are continuously
regenerated for on-the-fly obstacle avoidance inside the scope
of the local terrain map. We show that implementing a
hierarchical model over a regular space division reduces graph
edge expansions by up to 84 %. We illustrate the applicability
of the method through experiments with an unmanned ground
vehicle in both structured and unstructured environments.

I. INTRODUCTION

Navigating off-road environments is a key challenge for
unmanned ground vehicles (UGVs). While smooth, road-like
environments can be traversed using only planar scanning for
obstacle avoidance, this does not always apply to rough and
unstructured terrains as variations in terrain inclination can
be perceived as obstacles. One strategy to address this issue
is to classify obstacles using 3D scanners and to capture
the estimated traversability in a planar costmap [1]. Body
vibrations introduced by non-planar terrain can distort envi-
ronment scans if the ego-motion is not properly estimated.
Using scan alignment for terrain assessment where precise
sensor tracking is unavailable has been proposed but can be
computationally expensive without strong observation filter-
ing and requires map post-processing to deal with outliers
and enable meaningful planning [2].

In this paper, we propose a hierarchical environment
model, an approach for efficient model optimization, and a
search-based local planner that enable navigation in rough
terrain without any observation preprocessing. Our approach
sets limits on the admissible terrain resolution to ensure
that flat terrain observed under vibration or sensor noise is
not modelled as a rough surface. The admissible resolution
can be chosen according to the size and capabilities of the
UGYV, ensuring that only relevant information is captured
in the terrain model. Compared to observation clustering-
based approaches, this negates the need for any arbitrary
observation filtering and iterative scan alignment procedures.

The different hierarchy levels in our terrain model corre-
spond to terrain resolution levels and the recursive structure

10000000000000004
66066000000606000:

Fig. 1. Top-down view of our terrain analysis and path planning approach in
an off-road environment (top) and corresponding first person view (bottom).
The hierarchical grid can be used both at full resolution and with an adaptive
resolution (top left and top right, respectively). Mesh vertex colour from
green to blue indicates cost to arrive (low to high), whereas gray indicates
infinite or non-explored cost. The black path indicates the global plan, whose
intersection with the local map in the top right corner is the only reference
point the local planner is aware of. The red path indicates the local plan
found in the graph. Both the white pole and the large vehicle are detected
as obstacle regions as indicated by gray vertices.

can be stored compactly as a tree. This enables dynamic
resolution changes, simultaneously allowing for fine-grained
obstacle resolution and sparse open space representation,
greatly reducing the complexity of both model optimization
and path planning as illustrated in Fig. 1. We present a
graph search implementation that is suitable for generating
local paths in real time during exploration. The proposed
approach leverages a unique set of vertices to simultaneously
express the terrain model at varying resolutions, to state the
terrain optimization problem, and to solve the graph search
planning problem, as illustrated in Fig. 2. The applicability
to automated driving is demonstrated in a large industrial
environment that includes overhanging structures as well
as on- and off-road terrain. Successful on-the-fly obstacle
avoidance in rough environments is presented. In summary,

034 | 033
04

030 | 031

01 02

(a) (b)

2N
>

(d)

Fig. 2. Exemplary terrain model expressed as a space-dividing cell map (a), optimization graph with vertices (dots) and associated observations (squares)
(b), and path planning graph with vertices and all admissible paths (c). The underlying data structure of (a)-(c) is the tree illustrated in (d), whose nodes
(circles) contain all vertices and whose structure uniquely determines all edges in the other representations.

this paper presents the following contributions:

e A novel graph-based, multi-resolution terrain model
suited for real-time optimization.

o A unified and reusable underlying data structure for
terrain modelling and path planning.

o Demonstration of the applicability of our approach
through experiments in both structured and unstructured
environments.

The remainder of this paper is structured as follows: We
give an overview of related research in Sec. II. Sec. III lays
out the methods developed in this work while experimental
results are introduced in Sec. IV. Conclusions and future
work opportunities are presented in Sec. V.

II. RELATED WORK

Garrido et al. [3] use a triangular mesh as basis of a
map representation. Additional information (height, spherical
variance and surface gradient) is captured in a weighting
matrix which is subsequently used for planning using the
fast marching method. This requires specific extraction of
additional features from every environment cell while our
approach is capable of using the terrain modelling output
directly for planning. Breitenmoser and Siegwart [4] show
that terrain extraction using either implicit or explicit obser-
vation meshing by triangulation requires filtering and mesh
post-processing even when driving on smooth surfaces, a
complication that would only be amplified when meshing
rough terrain under heavy sensor vibration while driving.

Kiimmerle et al. [1] demonstrate a local planner capable
of navigating multi-story parking garages. It finds obstacles
in the observations and then considers traversability in 2D
only which disregards all information about inclination and
terrain roughness below some obstacle threshold. In contrast
to this, our planner is capable of minimizing not only for
minimal distance, but also for minimal change in robot
body orientation which can be advantageous especially when
navigating non-planar and rough environments.

Kriisi et al. [5] identify traversable points in a simi-
lar fashion and implement a sampling-based planner. The
distinction between initial plan generation and subsequent
optimization is made. The method is applicable to any terrain
but it can fail when dynamic obstacle avoidance is required

and the local optimizer demands a new initial plan. In
contrast to this, the local plans computed by our method
are always recomputed in their entirety and planning times
are consistently fast at the cost of universal applicability. Our
algorithm performs collision checks against all environment
cells that are occupied by part of the robot body at any stage
when moving between discrete locations and also against all
observations in real-time. The true robot body size is taken
into account in these checks and no templates for performing
collision checks are required.

III. METHODS

Our local path planning pipeline for unstructured environ-
ments, depicted in Fig. 3, consists of three main modules: the
terrain model, the optimizer, and the local path planner. The
terrain model receives as an input environment observations
and populates an underlying data structure. The optimizer
modifies the parameters of the model to find a best fit given
the observations. The local path planner attempts to find a
path on the optimized terrain model (specifically, a graph
representation of the underlying tree) towards a reference
path or waypoint given by a global planner.

observations .
———— | Terrain model

optimization graph odometry

Optimizer Plan follower ——
command
planning graph
reference path
—— | Local path planner local plan

Fig. 3. System diagram of the proposed optimization-based terrain
modelling and path planning pipeline.

A. Terrain model

In the construction of our terrain model, we assume that
traversable terrain can be captured by a mesh. We attempt
to find the best positions of all vertices in this mesh, such
that the surface of all cells outlined by these vertices best fits
some set of observations. An intuitive special case of such

a mesh would be an initial simple regular grid of squares
where each node in the grid can move in space to adapt
to observations. Regular grids, however, can be inefficient
as there is no mechanism to capture an area composed of
many cells as flat space. This is not optimal for optimization
and planning since a lot of computation could be saved by
capturing flat areas at a lower resolution. While our model
can be thought of as a mesh covering the environment,
our implementation represents it as a graph that uses an
underlying space dividing tree for compact and efficient
storage of vertex positions and connectivity information.

1) Model Formulation: We represent the environment by
a set of cells ¢;, each element of which is uniquely described
by the set of vertices V; that describe its outline polygon. The
members of V; do not necessarily lie on a common plane.
The position of the vertices are the model parameters to
be optimized. The cells are arranged such that they form
a tessellation when projected onto a horizontal plane. The
terrain model is constructed by recursive expansion of a
space-dividing tree where tree nodes correspond to cells ¢; in
the environment and also hold their respective sets of outline
vertices V;. The tree root corresponds to the scope of the
local map. During model construction, tree leafs are split
recursively into b (branching factor) children until the tree
depth is equal to a maximum tree depth [that depends on
available computing power and desired resolution. During
this process, leafs are subdivided by virtue of cutting planes.
New vertices are generated at intersections between cuts or
between cuts and existing cell borders.

While this process is similar in concept to building a
space-dividing k-d-tree [6], multiple cuts per tree level are
allowed and all nodes of the resulting tree hold references to
the vertices of their outline polygons. Tree nodes might refer
to the same vertex even across tree levels as every new cell
captured as a new tree leaf is bound by both members of the
set of vertices of its parent tree node and new vertices. An
illustration of how new cells are constructed from their parent
and how vertices are related is shown in Fig. 4. Vertices
that are shared between adjacent cells or between tree levels
correspond to the same allocated memory. After expanding
to [tree levels, the number of cells at the highest resolution
is given by b/, while the total number of cells across all
levels is):5,:1 B,

Since tree nodes remain valid environment cells after
construction of their children, this data structure enables
dynamic resolution changes by introducing the set of active
cells C. The set C contains all cells that are considered
during terrain optimization and its members are not required
to be taken from a single level of the space dividing tree.
Instead, any node in the tree and its associated cell is
active if its parent and all its children are inactive. This
requirement implies that 1 < |C| < b'~!, meaning that the
smallest possible set of active cells contains only the root
node of the tree while the largest possible set contains exactly
all the existing tree leaves.

2) Observation association: In this context, an obser-
vation refers to a single point in the local environment

Fig. 4. [Initial cell subdivision example. A parent cell ¢y outlined by its
set of vertices Vj is split into four children cells c¢i-c4 with sets of vertices
Vi-V4 by adding vertices at the side midpoints and in the center. Dashed
lines indicate coinciding vertices. The four vertices of the parent cell V; are
shared across both resolution levels. In this example, nine vertices are used
to define five cells at two levels of resolution.

perceived by a terrain scanning device, represented as a
position vector y € R?. While traversing terrains, the terrain
model is periodically updated using sets of such observations
denoted by Y. When Y is combined with the terrain model,
every observation y; € Y is associated with exactly one cell
in the map by projecting all y; and all map vertices into
a horizontal plane and finding the containing cell for each
observation. We introduce the set of associated observations
Y; which is given by all y; € Y that lie in the interior of the
terrain cell ¢; after projection. This can be done efficiently
since the terrain model is captured as a space-dividing tree.

B. Optimizer

In order to optimize the terrain model parameters with
respect to a set of observations Y, a cost is evaluated per
cell ¢; and its set of associated observations Y; and the total
cost incurred by the map is defined as the root mean square
(RMS) value over all costs. In the following, for brevity, we
demonstrate the cost evaluation for an individual cell only.
The cost R for cell ¢; is

- Y (07— D) =0) (1)
Hoyketi

where n is a plane normal vector estimate obtained from
the vertex positions V;, ¥ = ‘V‘ Yoev v’ is the mean position
of all vertices outlining the polygon and (2, is a weighting
matrix. When evaluating (1), the summation over the outer
product (yx —) ® (yx — ¥) can be expensive as |¥;| can be
large. In a simplistic solution, the cost function must be
evaluated once for every cell after every minimization step
and twice for every degree of freedom of every vertex of
every cell when evaluating cost derivatives numerically. This
behaviour is undesirable, especially when the set of associ-
ated observations ¥; does not change over many minimization
steps. The evaluation is simplified by introducing estimates
for the sample mean fi, € R3*! and the covariance matrix
L, eR¥3 as

Y ny Z Uk — i) (e —)" (2)
yr€Y;

y
|Y| v,

~<

Using this result, the outer product can be expressed as

Y (=) (e —0)"

k€Y

=Y (i) + Y| (00" —go" —oy") 3)
Yyr€Y;

= |Yz| : (ﬁ‘y+ﬂyﬂ£) + |Yz| : (1_”7T _ﬂy{’T —@ﬂ{?)-

Result (3) allows for rewriting the cost function without
using individual point-to-plane distances. We write

R=\/nT 02, (2 + iyl +007 — p, o7 —opl) 2In (4)

which corresponds to optimizing with respect to an ob-
servation distribution estimate. This completely separates
the summations from variables that are influenced by the
optimization, which are the mean vertex position ¢ and the
plane normal vector n. It is important to note that introducing
the estimates in (2) does not constitute an approximation but
an exact result. In our approach, the summations over a total
of |Y;| terms need only be evaluated once during optimization
initialization and are cached for successive cost and cost
derivative evaluations.

The mean vertex position ¥ and the plane normal vector
n are dependent on the positions of the members of V;,
which are subject to optimization. They must therefore be
updated after every cost function minimization step. In order
to estimate n, we define an over-parametrized plane model
as ax+ by +cz—d =0 where a,b,c,d € R. Since we are
only estimating the plane normal direction, we can choose
an arbitrary value for d. for example d = 1. This describes a

. T
lane with normal vector n = —2— where p=(a b ¢

P Vrlp ()

is tangent to an origin-centered sphere at 7y = —A—n = £

The distance e¢; € R of a vertex position v; € V; from the
plane with normal n and member ¢ is found by projection
to the plane normal vector according to

T
vip—1
ejz(vj—ro)Tnzij —
pp

Our approach assumes that shortest distances e; of vertices
from the idealized plane with normal vector n are distributed
normally with zero mean and finite variance 6> € R and thus
introduces a new random variable

fi=eiVpp=vip—1~.4(0,6>p'p) R

Since fj is zero-mean and its variance is linear in plp,
it is used to obtain the maximum likelihood estimate
pME for the value of p. We define the vector of model
parameters 5 = p and cast to a least-squares estimation
problem by introducing X = (vi v v‘vi‘)T e RVilx3
and z= (1 1 l)T e RVil¥1 The maximum likeli-
hood estimator in the presence of zero-mean Gaussian
disturbances f; is exactly the argument that minimizes the

BML

sum of squared residuals
A . . 2
AME = argmin Z fj(vj)z = argmin Z (vap— 1)
A v;€V; B v;€V;

= argmﬁin (XB—2)"(XB—2)=(X"X)"'X"2

—1
_ 11T /
= Z vv Z v .
v'eV; v'eV;

This has a unique solution, since vertices are never collinear
by construction and thus X7 X is always invertible. The
maximum likelihood plane normal vector estimator is then
given by A

BML

1ML

=

®)

C. Local path planner

Graph search algorithms are used to plan a path on
the underlying representation of the local terrain model.
The planning graph is implied directly by the optimization
result: Every active vertex, that is, any vertex v,, € Uilc,EC Vi,
corresponds to a vertex in the planning graph and shares
an edge with another vertex v, € {Ujjc,ec Vi} \ vm if there
is a cell ¢; € C of which they are both members, that is,
e €C | v EVikAvy €V

1) Planning cost: The robot heading at each node is
defined according to the position of its predecessor or - if
available - its successor in the current plan. An orientation
matrix for a given 3D position ¢ and heading h is estimated
by finding the set of all cells that contain a robot ground
contact point 7, ;(t,h), denoted by Cyc. From this set of cells,
a local ground normal direction is estimated by using (5) over
all vertices outlining the cells in Cgc. The robot heading is
orthogonalized with respect to the estimated normal vector
7 using a Gram-Schmidt process according to

N h—nhTh
hi=——F—.

[|h —AhTA||
The full estimated robot orientation matrix is thus given by

T(t,h):=(hy nxh, n)eSOA).

The cost-to-go from position ¢;, direction d; to position ¢,
direction d; is a function of both the Frobenius norm of
the change in orientation ||T'(¢;,h;) — T'(t;,h:)||r and the
Euclidean distance |[t; —t;||>. The L' norm of the relative
positions of target ¢ and initial state s given by ||¢, — || is
used as a normalizing constant for the euclidean distance.
The maximum value of the relative orientation of T, =
T(ti,hi), Tj =T(t;,hj) can be found in closed form as

||Tj*Ti||F: _ max HI3*T,-TTI'||F:2\f3_
T;,1,€S0(3) -

_ max
T3, 1;€50(3)

The full cost function is thus defined as
It —till2 | 1T —Tille
ti,hiti h;) = .
f(l Y] j) Htt_ts”l 2\/§

Since both addends in f are linear in norms, subadditivity
is satisfied by definition and f is admissible for defining a
consistent heuristic as h(t;, h;) == f(t;, hi, te,).

Using f, Dijkstra’s algorithm (Dijkstra [7]) can be used to
find an optimal path from s to ¢. Inclusion of /& enables the
use of A* graph search (Hart et al. [8]), which has proven
to significantly speed-up convergence in our implementation,
as shown in Fig. 5.

2) Obstacle detection: After optimizing the terrain with
respect to a set of observations Y, a binary classifier performs
an initial traversability assessment. The classifier works on
the distribution of the observations and the positions of the
vertices of the cell they are associated with, and serves the
purpose of reducing the planning search space. A support
vector machine with a radial basis function kernel was
trained on data recorded with a UGV.

The estimated first, second and fourth moments of the dis-
tribution of shortest distance between individual observations
and the idealized cell surface were chosen as classification
features since they can be expressed in terms of estimates
that were cached already for efficient optimization. The third
moment was not used since it did not significantly improve
classifier performance compared to the fourth moment. De-
viating from their respective definitions, we estimate the
second and fourth moments about zero instead of the sample
mean and normalize all moments with powers of the variance
about the sample mean. Our approach assumes a normal
distribution and estimates the excess kurtosis with respect
to 312, where [, is the normalized second moment. This
approach allows us to reuse results derived in (3) and can be
conveniently expressed as

fio1 = vXicie nl(iy,—17)
e,l — N - N
\/nTEyn \/nTEyn

viie (S pypg + 0" —p, ot —opd)n

ﬁe,Q =

anJyn anJyn
LvN 4 LvN 2\2 ILyN 4
fipq = Nzkzlek_3(ﬁzk:13k) _ N Lk—1Ck _ [12
e.q4 A — ~ 2
' (nT Xyn)? (nTXyn)? “?

This yields a set of dimensionless (and thus scale-invariant)
features. Finally, we collapse all features into the interval
[0,1] by defining our feature vector as

r= (1 — efll:le,ll 1 — eflﬂe,Z‘ 1 — eill“lﬁ’.‘”) .

Our experiments showed that including the normalized
excess kurtosis as a feature improves obstacle detection
accuracy, measured as ratio of actual obstacles that are
correctly classified as obstacles, from 61 % to 95 % while
reducing the number of support vectors required by a factor
of three. Similarly, the ratio of classified obstacles that are
actual obstacles improves from 51 % to 81 %.

IV. EXPERIMENTS

In this section we present experimental evaluation of our
proposed approach and compare it with existing methods.
We also discuss optimization performance considerations and
the effects of adaptive resolution and heuristic-based graph
search algorithms and show a sample output of our local
planning pipeline.

A. Practical implementation details

We have evaluated our approach on a John Deere Gator TE
that was automated at CSIRO. The vehicle is equipped with
a Velodyne PUCK VLP-16 LiDAR mounted approximately
I m above the vehicle. The base of the sensor is tilted by
45deg from the ground plane and continuously revolves
around the vehicle vertical axis in order to maximize the field
of view. All evaluations were performed using a computer
with an Intel® Core™ i7-6500U CPU and 16 GiB DDR4-
2133 main memory. The operating system was Ubuntu 16.04.
Our implementation relies on Eigen [9] for linear algebra and
g20 [10] for graph optimization and planning.

B. Point cloud planner

The proposed approach was compared against the Point
Cloud Planner (PCP) presented in Kriisi et al. [5] since
it attempts to solve a similar problem (navigating rough
environments with or without prior knowledge of the map)
with a similar sensor setup (focus on 3D LiDAR). While
our proposed approach relies on a locally consistent global
positioning system (that may or may not maintain its own
map) and completely rebuilds the local environments, the
PCP plans paths directly on a full global 3D map, if available,
and up to the observation horizon. To ensure that the planning
range for both planners was similar, both used the same
set of observations and target inside the map range of our
proposed planner. The PCP did not have a prior map of the
environment.

Since the PCP relies on the output (and the observation
filtering) of a SLAM system based on iterative closest point
scan alignment, the time spent filtering observations and
updating and post-processing the map were not included
for the PCP in this comparison, whereas for our proposed
approach, map updates (optimization) and path planning
were also considered. Observation association times were
in the order of 1 ms and were subsequently neglected. The
timing results are shown in Tab. I. To rule out any effects
of the SLAM system on the PCP results, these times were
obtained by commissioning the planner with finding a path
with the vehicle in a static position in a static environment.
PCP first computes an initial path (PCP—initial) and then
optimizes it (PCP—static) whenever a new environment scan
is registered and the map is updated. Our approach does
not make that distinction and finding a path in a static
environment takes the same amount of time (Proposed—
static), no matter whether a previous solution is available.
We also show the execution time of our proposed approach
when traversing the same environment instead of scanning it
statically (Proposed—dynamic). In that case, execution times
are slightly longer since body vibrations and other sources
of noise require a higher map resolution.

The results show that the proposed constrained terrain
model is capable of consistently higher path update rates,
enabling on-the-fly path re-planning and obstacle avoidance
when used on a UGV.

TABLE I
TIMING OF PCP AND THE PROPOSED APPROACH

Algorithm Execution times (ms) Total
Optimization ~ Obstacles Planning

PCP-initial - - 1504 1504

PCP-static - - 430 430

Proposed—static 110 17 17 144

Proposed—dynamic 141 39 19 199

C. Optimization performance

We compared the optimization performance of the pro-
posed constrained optimization clustering approach intro-
duced in Sec. III-B. Execution times of our optimizer
were compared against optimizing the terrain with respect
to all individual observations and against computing the
unconstrained least squares solution, which corresponds to
optimizing without any constraints. In the experiment, 1024
terrain observations were generated by sampling an under-
lying plane model and disturbing the result with noise in
the true plane normal direction. The observations are then
associated to one environment cell with four vertices with
random initial positions. The timing results are shown in
Tab. II.

TABLE I
TIMINGS OF DIFFERENT TERRAIN MODEL OPTIMIZATION TECHNIQUES

Algorithm Execution time (ms) Improvement (%)
Single observation 28.5 0
Clustered observation 1.38 95.1

Least squares 0.106 99.6

D. Planner sample output

The performance of the proposed graph search planner
was evaluated in an environment with obstacles as shown in
Fig. 1. Visualized in red are paths found by the A* graph
search algorithm on the full resolution and the adaptive
resolution meshes, the latter exploits the tree hierarchy to
dynamically resolve areas around obstacles. The current goal
is the intersection of the global plan (black) with the local
map border at the top right. The local planner shows desir-
able behavior compared to the global planner by successfully
cutting corners when allowed by the perceived terrain but
choosing a longer path to evade an obstacle on the global
reference trajectory. In our experiments, the UGV was able
to navigate a distance of over 600 m without intervention.

E. Graph search evaluation

The numbers of expanded nodes when traversing this envi-
ronment were recorded for comparison. The mesh optimizer
was run in full resolution and adaptive resolution mode
on the same inputs, with paths being generated using both
Dijkstra’s and the A* algorithm. The results are shown in
Fig. 5. Three situations should be distinguished when moving
towards a target:

1) The target is outside the map and the intersection of

the boundary with the global plan is a feasible position.

u. 1) kstra aptive Dijkstra
In Ful Dijk Adaptive Dijk
I pun A In Adaptive A*

£ 1

el
é g 0751 —
S = | —
gg 0.5
5 g 025 —
2 0

Target out of range Target in obstacle Target approaching

Fig. 5. Comparison of the number of edge expansions when searching for
an optimal path to a given target, normalized with the number obtained for
using Dijkstra’s algorithm on the full resolution map. The other algorithms
are using either adaptive resolution, A* search or both.

2) The intersection point or the end of the global plan are
in the local map but the containing cell represents an
obstacle, the current goal is thus unreachable.

3) The global target is inside the local map and reachable.

The first is the generic case. In our experiments 80.39 %
less edges were expanded in the graph search when using A*
on an adaptive resolution mesh instead of running Dijkstra’s
algorithm on the full resolution mesh.

In the second case, the advantage of A* is less pronounced
since early termination is not possible when the global
target is never achieved. Instead, the complete mesh must be
searched for the best possible alternative path in a heuristic
sense. The advantage of adaptive resolution is still obvious,
with 55.44 % less explored edges on average.

The third case with the target approaching demonstrates
the advantage of using a cost heuristic. The main speed-up is
achieved by finding a feasible path to the target very quickly.
Once a cost has been assigned to the target, most nodes can
be rejected based on their cost heuristic. Overall, 84.27 %
average less number of edges were explored, while even the
full-resolution A* search saves 82.54 %.

V. CONCLUSION

In this work we proposed a novel optimization-based
approach to local path planning for UGVs navigating in
both structured and rough environments. We developed a
hierarchical, graph-based, multi-resolution terrain model and
demonstrated the use of a single underlying data structure
for both terrain modelling and path planning. We trained
a distribution-based binary classifier to reduce the planning
search space and included a cost heuristic to speed up con-
vergence. We demonstrated the applicability of our approach
in real-world experiments involving on- as well as off-road
environments. We showed how clustered optimization and
dynamic resolution contributes to lower processing (and,
thus, reaction) times. In our experiments, out proposed local
planner successfully takes shortcuts with respect to a global
reference path when it is safe to do so while obstacles on
the reference path trigger an evasive maneuver.

Future work could focus on a fully probabilistic optimiza-
tion, incorporating a 3D sensor noise model and covariance
estimation per environment cell. Additionally, an iterative
resolution-refining planner exploiting the full tree model
hierarchy could improve planning performance.

REFERENCES

[1] R. Kiimmerle, D. Hihnel, D. Dolgov, S. Thrun, and
W. Burgard, “Autonomous driving in a multi-level
parking structure,” in Proc. - IEEE Int. Conf. Robot.
Autom., 2009, pp. 3395-3400.

[2] P. Kriisi, B. Biicheler, F. Pomerleau, U. Schwesinger,
R. Siegwart, and P. Furgale, “Lighting-invariant adap-
tive route following using iterative closest point match-
ing,” J. F. Robot., 2015.

[3] S. Garrido, M. Malfaz, and D. Blanco, “Application of
the fast marching method for outdoor motion planning
in robotics,” Rob. Auton. Syst., vol. 61, no. 2, pp. 106—
114, 2013.

[4] A. Breitenmoser and R. Siegwart, “Surface
reconstruction and path planning for industrial
inspection with a climbing robot,” 2012 2nd Int.
Conf. Appl. Robot. Power Ind., pp. 22-27, 2012.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epicO3/wrapper.htm?arnumber=6473354

[5] P. Kriisi, P. Furgale, M. Bosse, and R. Siegwart,
“Driving on Point Clouds: Motion Planning, Trajectory
Optimization, and Terrain Assessment in Generic
Nonplanar Environments,” J. F. Robot., vol. 34,
no. 5, pp. 940-984, 2017. [Online]. Available: https:
/fonlinelibrary.wiley.com/doi/abs/10.1002/rob.21700

[6] J. L. Bentley, “Multidimensional binary search trees
used for associative searching,” Commun. ACM, 1975.

[71 E. W. Dijkstra, “A note on two problems in connexion
with graphs,” Numer. Math., 1959.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “Correction
to ”A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”,)” ACM SIGART Bull., 1972.

[91 G. Guennebaud and B. Jacob, “Eigen v3,)”
http://Eigen. Tuxfamily.Org, 2010.

[10] R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige,
and W. Burgard, “G2o0: A general framework for graph
optimization,” in Proc. - IEEE Int. Conf. Robot. Autom.,
2011.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6473354
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6473354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21700
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21700

	Introduction
	Related work
	Methods
	Terrain model
	Model Formulation
	Observation association

	Optimizer
	Local path planner
	Planning cost
	Obstacle detection

	Experiments
	Practical implementation details
	Point cloud planner
	Optimization performance
	Planner sample output
	Graph search evaluation

	Conclusion

