
OVPC Mesh: 3D Free-space Representation for Local Ground Vehicle
Navigation

Fabio Ruetz1, Emili Hernández2, Mark Pfeiffer1, Helen Oleynikova1, Mark Cox2, Thomas Lowe2, Paulo Borges2

Abstract— This paper presents a novel approach for local 3D
environment representation for autonomous unmanned ground
vehicle (UGV) navigation called On Visible Point Clouds Mesh
(OVPC Mesh). Our approach represents the surrounding of
the robot as a watertight 3D mesh generated from local point
cloud data in order to represent the free space surrounding
the robot. It is a conservative estimation of the free space and
provides a desirable trade-off between representation precision
and computational efficiency, without having to discretize the
environment into a fixed grid size. Our experiments analyze the
usability of the approach for UGV navigation in rough terrain,
both in simulation and in a fully integrated real-world system.
Additionally, we compare our approach to well-known state-of-
the-art solutions, such as Octomap and Elevation Mapping and
show that OVPC Mesh can provide reliable 3D information for
trajectory planning while fulfilling real-time constraints.

I. INTRODUCTION

Unmanned Ground Vehicles (UGVs) have many potential
applications in a broad range of industries, such as agri-
culture, search and rescue, and mining. However, many of
these applications require navigation in rough, unstructured,
or complex terrain. In such scenarios, 2D approaches fail to
accurately represent the environment, and 2.5D maps still
struggle to handle objects such as overhangs. 3D maps can
accurately represent the complete environment, but usually
have to be discretized to a minimum voxel size. A coarse
discretization is computationally efficient, yet does not allow
for an accurate representation of small objects, non-axis-
aligned surfaces, or inclines. A fine one is computationally
not tractable for real-time applications.

We present a local, robot-centric 3D map representation
that explicitly models the free space around the robot to allow
fast, conservative local planning. Our approach, On Visible
Point Clouds Mesh (OVPC Mesh), molds a watertight 3D
mesh onto a point cloud simplified with the general hidden
point removal operator [1], as shown in Figure 1. Using this
approach, a point cloud can be reduced to the visible points
from a certain viewpoint. The volume encapsulated by this
mesh is guaranteed to be a conservative estimation of free
space. The mesh represents the information boundary, as the
volume inside the mesh is free space while the outside is
considered unknown. We show how the constructed OVPC

This research was partially funded by the NATO Science for Peace and
Security Programme through the IUFCV project (Ref. 985079).

1Autonomous Systems Lab, ETH Zurich, Switzerland
{ruetzf, oelena, pfmark}@ethz.ch,
2Robotics and Autonomous Systems, Data61, CSIRO, Brisbane, Australia
{Name.Surname}@csiro.au

Fig. 1. Raw local point cloud (colored by intensity) obtained from a
3D LiDAR and the extracted watertight mesh (white edges). The mesh
encapsulates the robot and gives a conservative three-dimensional free-space
estimate of the local robot surrounding. This environment representation can
also be used for rough-terrain motion planning.

mesh can be used to estimate traversability, which can in turn
be used directly in a variety of path planning techniques.

Compared to voxel-based methods, the associated com-
putational complexity is low, which allows for a real-time
deployment on robotic platforms with limited computational
resources.

The capabilities of our approach are analyzed both in sim-
ulation and on a real robotic platform. We show a comparison
to existing state-of-the-art 2.5D and 3D solutions, namely
Elevation Mapping [2] and Octomap [3], respectively. Our
results show successful autonomous navigation of a UGV
in both structured and unstructured environments, including
steep off-road inclines and overhangs. Our contributions can
be summarized as follows:

• Application of the general hidden point removal opera-
tor to generate a conservative free space representation
from a raw 3D point cloud for navigation purposes.

• Traversability analysis on the 3D watertight mesh for
rough terrain navigation.

• System evaluation on a UGV, using the traversability
information for local planning purposes.

II. RELATED WORK

A common map representation for ground vehicles is the
2D grid map [4]. Such maps are computationally efficient and
a robust solution for ground robot navigation in structured
environments [5]. 2D grid maps have even been extended to
navigation on rough terrain by performing terrain classifica-
tion for each cell of the map [6]. However, since the map is
still only 2D, it is very limited in what kind of environments
it can represent – and attempting to navigate in less structured



environments, such as those featuring overhangs leads to
either missing valid paths or executing unsafe ones.

Another common map representation for UGV operation
in unstructured environments is the digital elevation map
(DEM) [7]. DEMs store a height estimate in each grid cell
to capture the 2.5D geometry of the environment. Classical
DEMs suffer from two short-comings for our target appli-
cations: first, they lack the ability to represent overhangs,
and second, their world-centric global formulation require
accurate global pose estimates. These are often not available
on real robots, where local odometry errors can accumulate
to large global drifts. Droeschel et al. [8] attempt to overcome
the need for consistent global localization by expressing the
map in a robot-centric frame. Additionally, Fankhauser et
al. [9] also consider motion estimation uncertainty into their
probabilistic 2.5D map. Our approach is also robot-centric,
but in contrast to these methods, is full 3D, allowing it to
handle overhangs and other complex geometry.

Triebel et al. [10] extend DEMs to global multi-level
surface maps to overcome the overhangs challenge and loop-
closures. They do not model overhangs explicitly, but require
a minimum height distance between two surfaces to ensure
a safe traversability; otherwise they are closed off.

The easiest way to accurately represent overhangs is in
a full 3D map. Many approaches exist, most of which
discretize the environment into some fixed minimum voxel
or block size due to the huge computational and storage
requirements of such maps. Octomap [3] uses octrees to
allow the system to scale to large spaces, but the octree
structure requires a tree traversal for look-ups or insertions,
slowing down map queries. Voxblox [11] instead uses a voxel
hashing strategy, which only allocates fixed-size blocks in
those regions of the map that contain data to scale to large
areas without slowing down map access. In contrast to Oc-
tomap and Voxblox, ewok [12] uses a fixed-size robot-centric
map and a ring buffer to store 3D occupancy information.
In contrast to these methods, our approach is a 3D, robot-
centric map representation that does not rely on a fixed grid-
size discretization, allowing us to more accurately represent
local structure of different scales.

Krüsi et al. [13] present a 3D mapping approach specif-
ically designed for UGV navigation on rough terrain. The
map is stored as a global point cloud and the surface is
reconstructed only locally for traversability analysis. Despite
avoiding discretization issues, this strategy requires precise
global localization and point cloud alignment to avoid global
map misalignment.

Meshes are another way to represent the environment in
3D. For example, [14] proposes a fast mesh reconstruction
algorithm for noisy, non-uniform point clouds, focusing on
the mesh accuracy as well as the meshing speed at near real-
time speed. Gingras et al. [15] generate navigable spaces
as triangular 3D meshes for a ground robot. These meshes
represent only the surface areas the robot can traverse,
excluding all non-traversable areas, which is conceptually
similar to our approach. However, map updates with new
sensor measurement take multiple seconds, making it un-

suitable for real-time applications. Our method demonstrates
runtimes comparable to or faster than discretized methods,
without trading off accuracy on small obstacles.

III. METHOD

The goal of our approach is to develop a conservative 3D
representation of the environment which is computationally
efficient and can later be used for trajectory planning for a
ground robot. In order to reduce the overall size of the point
cloud for mesh generation we use the general hidden point
removal operator (GHPR) where the visible points from a
certain viewpoint are determined. From the sparsified point
cloud, a watertight 3D triangle mesh is generated, bounding
the local free space, which is accurate enough to determine
the traversability of a car-size UGV.

A. Mesh Generation

Original Point Space Image Point Space

(a) GHPR operator and mesh construction

(b) Visible point and associated free space

Fig. 2. Mesh generation based on the GHPR algorithm: (a) Transformation
to generate the image points (blue) from the original point set (black).
Convex hull over image points generates connectivity between the points in
the image space and can be applied to the original point set(black full lines).
Points in the original space are visible (green transparent) if their images lie
on the convex hull, else they are considered non-visible (red transparent). (b)
Extending the edges from a visible point (green) to its neighbors to infinity
are mapped to curves in the original point space. These curves bound an
area or a volume in 2D or 3D (transparent orange), and are guaranteed to
be free of other observations.

In order to make the meshing operation real-time capa-
ble, we use GHPR, which is commonly used in computer
graphics to find visible points on objects from a given view-
point, without explicitly reconstructing surfaces. As shown
in Figure 2, the original point set (OPS), which is obtained
from a local point cloud, is transformed to an image point set
(IPS) using a radial transformation (see Figure 2). Making
use of the transformation, the visible point classification is
reduced to the problem of forming a convex hull over the
(transformed) IPS. A point is considered visible if its image
lies on the convex hull in the image space.

As Figure 2 shows, the connectivity information of the
convex hull in the image space can be transferred to the
original space in order to construct a triangle mesh on the
visible points. The resulting mesh is closed and watertight,



Fig. 3. Example of an OVPC Mesh from point cloud obtained with our
UGV: (a) intensity colored point cloud; (b) corresponding watertight triangle
mesh generated from the point cloud.

and it only depends on the visible points (from the current
viewpoint) of the OPS.

By construction, this method solves the visibility of point
classification dependant on free space associated with each
point in the OPS; free from any other points. The shape is
controlled by the kernel and limited by the point’s neighbours
(Figure 2(b)). The kernel parameter γ defines the minimum
required space for a point to be visible. This results in all
visible points lying on the boundary region free of other
observations. We use the exponential kernel and given the
shape of the curves forming the boundary, and we assume
that given two visible points their connecting edge will lie
within free space. Under the assumptions of perfect sensor
readings and all edges lying in free space, the generated
mesh is a conservative bound of the free space surrounding
the robot. The interested reader should refer to [1] for more
detailed explanation.

Fig. 4. Assessing the traversability on the mesh faces and generating
a map for navigation. Figure (a) shows the generated water-tight mesh
and the normal estimation of each face as short white line segments, (b)
shows each face classified in traversable (green) and non-traversable (red)
using geometric constraints described in Section III-B and (c) shows the
extracted point cloud representation where each point is classified based on
its traversability. Note that the outsides of the traversable area are strictly
non-traversable which allows for conservative navigation.

B. Map Representation for Path Planning

Once the mesh is generated, we perform a traversability
analysis on each polygon to constrain the local free space
according to our vehicle specifications. For this analysis,
we use the surface angle α: this is the angle between the
surface normal and the gravity-aligned world frame. A mesh
polygon is traversable if: the surface angle is smaller than the
threshold αmax and lies within the interval [-π/2 , π/2]; and
the maximum height difference among its vertices is smaller
than δh,max. Otherwise the polygon is set as non-traversable.

Inspired by [13], a point cloud is formed from the ver-
tices of the mesh. Each point is assigned a normal vector,
representing the estimated surface, and a binary traversability
score. The normal is calculated as mean of all normals from
the adjacent faces. A point is only considered traversable
if all the neighboring faces are traversable, see Figure 4(c).
This point cloud is used as a map representation for local
planning.

IV. RESULTS

In this section we describe our specific hardware and
software implementation followed by the results in simu-
lation, the ones obtained with a fully integrated UGV and
a comparison of our approach against two state-of-the-art
methods.

A. Hardware and Software Setup

A John Deere Gator automated by CSIRO [16] was used as
the test platform. The vehicle is equipped with a Velodyne
PUCK VLP-16 LiDAR and a Microstrain GX3 IMU. The
LiDAR is mounted at a height of 1.88m above the robot
frame at a 45◦ angle, as illustrated in the bottom right of
Figure 7. The LiDAR assembly is additionally mounted on
a spinning base, which rotates at approximately 0.5Hz [16],
and LiDAR measurements are streamed in at 20Hz.

Our mesh approach requires the LiDAR sensor readings
and the local pose transforms [16] for our pipeline. No global
localization is needed during the mesh construction and the
local path computation steps.

Fig. 5. Navigation pipeline overview: the sensor data is accumulated
in the point cloud buffer, filtered and sub-sampled; then, the mesh and
map generation module computes the watertight triangle mesh using the
GHPR operator, which is then used for traversability analysis. Finally, the
local planner generates a trajectory from the map, which is passed on to a
trajectory follower.

The system was implemented in C++ using ROS [17],
running on an external Dell Precision 7520 (Intel i7-4910MQ
CPU@2.90GHz and 16GB of RAM) connected via Ether-
net. An overview of our processing pipeline is depicted in
Figure 5 and consists of the following three steps:

1) Point cloud buffer: In the first step a point cloud buffer
aligns, filters, sub-samples and crops the data to generate a
robot-centric point cloud from a fixed number (20-30) of pre-
vious scans. At the upper edges of the bounding box used to
crop and generate the point cloud 4 virtual points are added
to prevent the mesh from collapsing in flat environments. In
our tests, the resulting scans contain between 6,000 to 27,000
points depending on the environment.

2) Mesh and map generation: A watertight triangle mesh
is then generated around the robot and the traversability of
the faces is evaluated. The mesh vertices are used to compute
the visible point cloud used for path planning, where each



point contains a normal and traversability information. This
step is described in detail in Section III-A and III-B.

3) Local path planning: We used the RRTconnect [18]
sampling based path planner from OMPL [19] in combi-
nation with the Reeds-Shepp [20] state space to generate
a local plan given a local goal. The local goal is obtained
from a given global plan and has to lie within the mesh at
a minimum distance ahead of the robot. During planning,
each sampled state in SE(2) is projected onto the map
using the closest visible point in Euclidean space. The state
is aligned to the local surface using the normal of the
visible point, while preserving the heading. Collisions are
detected by checking all visible points within a bounding
box according to the platform dimensions, which is aligned
with the sampled pose. Re-planning is enforced if (i) the
current path is in collision after a map update, (ii) the current
goal is too close to the current pose of the robot or (iii)
a time threshold has been exceeded (1 s). The maximum
computation time for planning is set to 0.1 s. If successful,
the local path is passed on to a trajectory follower [21].

B. Evaluation in simulation

Merging multiple point cloud scans together can lead to
misalignments. Thus, we explore how our method performs
when merging noisy, misaligned scans and how well the
underlying geometry can be described by using our method
instead of the raw point clouds. An accurate estimation of
the geometry is important, as the traversability estimation
depends on the normals of the mesh faces. We benchmark our
approach against an other normal estimation technique [22]
based on raw point clouds. We use the angular error to
evaluate the accuracy and variance between the estimated
normal and ground truth. This was evaluated in a 20m×20m
scene with a flat ground plane and an inclined plane with a
defined slope α. We vary α between 0◦ and 35◦ with 0.1◦

increments to determine if the inclination has any effect on
our normal estimation.

To simulate noisy bundled LiDAR measurements, we
bundle 5 simulated point clouds together, each containing
points spaced 0.2m apart and ±0.05m uniform noise in each
axis. A uniform error in orientation of ±0.5◦ and translation
of 0.1m was added to the ground and slope, representing the
pose uncertainty. Each scene is evaluated for a given angle
α. The robot was positioned in the centre of the ground plane
with the viewpoint at 1.88m above ground (LiDAR mount).

As a comparison we use the standard normal estimation
method [22] available in PCL [23] to estimate the normal
of a point. A radius of r = 0.3m was used to perform the
nearest neighbour search.

We use the angular error as the performance metric, i.e.
the angular distance between the estimated and the ground
truth normals.

The top plot in Figure. 6 shows our method mean angular
error of 3.25◦ over the full range of slopes. The variance is
bound and consistent for all tested slope angles. In practice
this error can be observed by our traversability estimation
when classifying traversable points as non-traversable. This

Fig. 6. Graphs of angular error of different normal estimation methods
on noisy, misaligned point clouds. Mean angular error (red) and ±σ (blue).
Top: The angular error is consistent, mean of 3.25◦ over all slope angles.
The variance is also lower comparing to the method using eigenvalues.
Bottom: The method using eigenvalues shows a higher angular error on
average and higher variance.

can be mainly observed on the ground plane, where small
triangles are oriented in such a way that they close the
mesh to make it watertight which potentially results in steep
inclines.

The eigenvalue method [22] shows significantly worse
results for the angle estimates given the same noisy point
cloud data, with higher angular error and variance. Our
method uses the local surroundings of a mesh surface to
generate the normal estimations. We adjusted the radius for
nearest neighbor search of the eigenvalue method to match
the size of this area to obtain fair results. Increasing the
number of nearest neighbours or the coverage radius will
make the estimation smoother and reduce the variance in
this scenario, but will lead to biased angle estimation in
the presence of more obstacles and complex environments.
Also, as shown in [13], it requires additional computations
on the point cloud to capture discontinuities and surface
roughness. OVPC Mesh captures those situations implicitly
due to coverage area used for the surface estimation. In
essence this experiment shows that our proposed method is
capable of accurately estimating the local geometry using
noisy point cloud scans.

C. Experimental results

We also conducted a real-world evaluation of the fully
integrated system by performing three fully autonomous long
runs navigating a total distance of more than 1.5 km, which
capture a variety of different environments at the Queens-
land Centre of Advanced Technology (QCAT) in Brisbane,
ranging from structured industrial sites to unstructured slopes
on steep inclines. Examples of the different scenarios are
shown in Figure 9. Parameters used for the experiments
are chosen as follows: γ = −0.03, δh,max = 0.25m,
αmax = 30◦, the viewpoint coincides with the LiDAR mount
position and the velocity was set at 1m

s . In general, the
map representation performed well in structured and semi-
structured environments, which were encountered on all 3
runs. Thin obstacles, such as posts, small trees or walls
were accurately detected and avoided while the global plan
was followed. The robot successfully navigated through these
areas without any human intervention.



TABLE I
STATISTICS OF THE RUNS SHOWN IN IN FIGURE 7.

Run Time [s] Distance [m] Color

Run 1 542 ∼605 Red
Run 2 503 ∼425 Yellow
Run 3 520 ∼480 Green

The end of yellow and red run consisted of a steep slope in
a unstructured area. Driving up this slope introduced severe
vibrations into the system. In general, this led to an increase
in noise but the traversability analysis was still robust enough
for navigation. In several instances, strong bumps and the
resulting errors in the state estimation were observed to
increase the noise such that the traversability estimation
failed. This forced the robot to stop and re-plan in order
to find a new trajectory, resulting in jerky movements. Note
that these issues appear only with the fully integrated system
when navigating in rough terrain and were not introduced by
our OVPC Mesh method.

Fig. 7. Three different fully autonomous runs performed at QCAT. The
overall covered distance is more than 1.5 km and includes both structured
and off-road environments. Bottom right: The John Deere Gator test
platform. The LiDAR sensor is mounted at a 45◦ angle and on a rotating
base, allowing the robot to observe more of its environment even with a
limited vertical field of view.

D. Comparison to other methods

We compare our method to two map representations
commonly used for robot path planning: Octomap [3], a full
3D representation, and Elevation Mapping [2], a 2.5D height
map. The purpose is to evaluate our method in terms of
map representation quality and computational performance
in challenging environments for UGV navigation.

1) Runtime benchmarking: We compare the runtime of
generating a local map for planning from our method to
Octomap and Elevation Mapping. For each computation a
buffered point cloud and corresponding pose was used. These
point clouds are the result of our point cloud buffer and
contain 8’000- 27’000 points. Pose and point cloud were
randomly chosen from our real-world data sets and are from
all over the test site seen in Figure 7.

Figure 8 shows the runtime distributions of OVPC Mesh,
Octomap and Elevation Mapping. Our method is not only
faster on average (µ = 16.78ms (our method) vs. 30.91ms
(Octomap) vs. 36.68ms (Elevation Mapping)) but also has
a lower spread and therefore more predictable runtimes

5

Fig. 8. Single point cloud map generation computation time histograms:
OVPC Mesh (red) requires a mean time of 16.78±5.04ms. Octomap (blue)
requires 30.91 ± 18.66ms to integrate the same data. Elevation Mapping
(green) generates the fused map in 36.68± 25.10ms.

(σ = 5.04ms vs. 18.66ms vs. 25.10ms), which is especially
desirable for fully integrated real-world systems.

2) Handling of overhangs: Overhanging obstacles express
a challenge for UGV navigation pipelines. In rough terrain
this requires a simultaneous traversability analysis of the
ground and an analysis of the overhangs. Since the LiDAR
sensor is mounted at an exposed position at the very top of
the vehicle, we need to pay particular attention to overhangs
for autonomous navigation of our system.

Figure 10 (d) shows an example of an overhanging
structure at the QCAT car park, which has sunroofs above
the parking spaces. Figure 10 (a) depicts our 3D world
representation with traversable faces colorized in green and
non-traversable in red. The roof and ground are clearly
separated w.r.t. traversability and the mesh extends from
under the roof, allowing for local navigation. This is further
illustrated in a wide angle shot (Figure 10 (e)). Additionally,
the figure also shows the robustness of our approach in terms
of capturing thin objects such as poles and small trees, and
its traversability classification in a challenging environment.

Figure 10 (b) shows the 3D voxel representation of the
overhang scenario using Octomap. It captures the overhang
accurately and also extends from under the overhang.

In addition to Octomap, we tested Elevation Mapping
in the overhang test scenario. The result using this 2.5D
approach is depicted in Figure 10 (c). Despite being capable
of modeling the area not covered by the roof sufficiently
well, the area underneath the roof is not modeled at all. We
assume that this is caused by the point exclusion heuristic,
which operates based on the point height and distance to the
sensor. Tuning parameters could not mitigate this effect.

V. DISCUSSION

OVPC Mesh has shown to be suitable for local UGV navi-
gation in structured and unstructured environments. However,
there are still several open challenges which are listed below.
Although more robust than raw point clouds, the mesh
generation process is sensitive to outliers in the LiDAR data,
which can make the mesh unusable for planning. Applying a
voxel filter, minimum 2 measurements per voxel to generate a



Fig. 9. The left column depicts the view from an on board camera during the autonomous navigation in structured (top) and unstructured (bottom)
environments. The middle column shows the same scene but from the view of the robot inside of the mesh. The faces of the mesh are classified as
traversable (green) and non-traversable (red). The local plan can be seen as a series of axes extending from the front of the robot. The right column shows
the same scene from outside of the mesh and visualizes the size of the area considered for local navigation.

Fig. 10. A comparison of how different mapping techniques handle
overhangs, shown from the UGV on-board camera in (d). (a) shows our
method, with the mesh colored by non-traversable (red) and traversable
(green), shown from a different perspective in (e), where thin obstacles,
poles and thin trees, are accurately classified. The mesh extends from under
the obstacle, allowing for local navigation. In (b), Octomap captures the
sun cover and ground accurately. In (c), Elevation Mapping struggles with
overhang, roof and floor outside of the overhang are reconstructed but not
under the overhang.

point, has shown to be sufficient to remove the most extreme
outliers. The discretization of the voxel filter is required for
downsampling and use centroids of voxels instead of its
centers, reducing the discretization error introduced.

Furthermore, the kernel parameter γ, which determines
the free space required for a point to be visible, has a
strong effect on the mesh generation (see Section IV-A.2).
Empirical evaluation showed that values γ ∈ [−0.01,−0.03],
in combination with the exponential kernel [1], generate the
most suitable results for UGV navigation in the environments
we target in this work. When choosing the kernel values
too close to zero nearly all points become visible and are
connected by edges, as little space is required per point to
be visible. Larger values will result in a sparser mesh. The
values chosen should be in accordance with the spacing of
the points in the point cloud and is application and sensor
dependent.

Using the convex hull algorithm to compute a triangular
mesh ensures that it is watertight. As a drawback, this process
also generates triangles that do not represent the environment
but connect points at the boundaries, where no LiDAR data is
provided. However, such blind spots (like negative obstacles)
are a common issue linked to local sensing and it is beyond
the scope of this paper.

Lastly, the mesh is viewpoint dependent and any change
on it will require to generate a new mesh and re-compute
the path on it, which is suitable for our UGV applications
since the average computation time of the whole process is
less than 20ms.

VI. CONCLUSIONS

In this paper, we presented a novel method to build a local
3D free space representation, and showed its applicability
in UGV rough terrain navigation. We generated a local
map consisting of a watertight, closed mesh which is a
conservative representation of the visible free space, and
computed the traversability of each mesh face to generate a
map representation suitable for local path planning according
to our vehicle constraints.

The accuracy of our traversability estimation was validated
in simulation, even in the presence of significant sensor
noise. We demonstrated our approach through autonomous
navigation on a fully integrated real system, navigating
through structured, semi-structured, and unstructured en-
vironments, including challenges of low hanging ceilings
and rough off-road terrains with steep inclines. Lastly, we
compared our approach to two state-of-the-art solutions both
qualitatively and quantitatively. The results show that our
approach provide an environment representation suitable for
autonomous rough terrain navigation while being computa-
tionally efficient compared to existing methods.



REFERENCES

[1] S. Katz and A. Tal, “On the visibility of point clouds,” in 2015 IEEE
International Conference on Computer Vision (ICCV), Dec 2015, pp.
1350–1358.

[2] P. Fankhauser and M. Hutter, A Universal Grid Map Library: Imple-
mentation and Use Case for Rough Terrain Navigation, A. Koubaa,
Ed. Springer, 2016, vol. 1.

[3] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[4] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps
for context-sensitive navigation,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2014, pp. 709–
715.

[5] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office envi-
ronment,” in 2010 IEEE International Conference on Robotics and
Automation, May 2010, pp. 300–307.

[6] M. Hselich, N. Handzhiyski, C. Winkens, and D. Paulus, “Spline
templates for fast path planning in unstructured environments,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sep. 2011, pp. 3545–3550.

[7] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb,
and R. Chatila, “Autonomous rover navigation on unknown terrains:
Functions and integration,” The International Journal of Robotics
Research, vol. 21, no. 10-11, pp. 917–942, 2002.

[8] D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping and
localization for autonomous navigation in rough terrain using a 3D
laser scanner,” Robotics and Autonomous Systems, 2017.

[9] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic Terrain
Mapping for Mobile Robots With Uncertain Localization,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, pp. 3019–3026, 2018.

[10] “Multi-level surface maps for outdoor terrain mapping and loop
closing,” in 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2006, pp. 2276–2282.

[11] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-
board MAV planning,” in IEEE International Conference on Intelligent
Robots and Systems, vol. 2017-Septe, 2017, pp. 1366–1373.

[12] V. Usenko, L. Von Stumberg, A. Pangercic, and D. Cremers, “Real-
time trajectory replanning for MAVs using uniform B-splines and a
3D circular buffer,” in IEEE International Conference on Intelligent
Robots and Systems, vol. 2017-Septe, 2017, pp. 215–222.

[13] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on Point
Clouds: Motion Planning, Trajectory Optimization, and Terrain As-
sessment in Generic Nonplanar Environments,” Journal of Field
Robotics, vol. 34, no. 5, pp. 940–984, 2017.

[14] Z. C. Marton, R. B. Rusu, and M. Beetz, “On fast surface recon-
struction methods for large and noisy point clouds,” in 2009 IEEE
International Conference on Robotics and Automation, May 2009, pp.
3218–3223.

[15] D. Gingras, T. Lamarche, J. Bedwani, and . Dupuis, “Rough terrain
reconstruction for rover motion planning,” in 2010 Canadian Confer-
ence on Computer and Robot Vision, May 2010, pp. 191–198.

[16] P. Egger, P. V. K. Borges, G. Catt, A. Pfrunder, R. Siegwart, and
R. Dub, “Posemap: Lifelong, multi-environment 3d lidar localization,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct 2018, pp. 3430–3437.

[17] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[18] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion, vol. 2, 2000, pp. 995–1001 vol.2.

[19] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics Automation Magazine, vol. 19, no. 4, pp. 72–
82, Dec 2012.

[20] P. Soueres and J. . Laumond, “Shortest paths synthesis for a car-like
robot,” IEEE Transactions on Automatic Control, vol. 41, no. 5, pp.
672–688, May 1996.

[21] J. L. Giesbrecht, D. Mackay, J. Collier, and S. Verret, “Path tracking
for unmanned ground vehicle navigation,” Technical Memorandum,
no. December, 2005.

[22] R. B. Rusu, “Semantic 3d object maps for everyday manipulation in
human living environments,” Ph.D. dissertation, Technische Universi-
taet Muenchen, Germany, 2009.

[23] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 2011.


