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Abstract— A reliable perception pipeline is crucial to the
operation of a safe and efficient autonomous vehicle. Given that
different types of sensors have diverse sensing characteristics,
fusing information from multiple sensors has become a common
practice to increase robustness. Most systems rely on a rigid sen-
sor fusion strategy which considers the sensors input (e.g., signal
and corresponding covariances), without however incorporating
characteristics of the environment. This often causes poor
performance in mixed scenarios. In our approach, we adapt
the sensor fusion strategy according to a classification of the
scene around the vehicle. A convolutional neural network were
employed to classify the environment and this classification used
to select the best sensor configuration accordingly. We present
experiments with a full size autonomous vehicle operating
in a heterogeneous environment. The results illustrate the
applicability of the method with enhanced odometry estimation
when compared to a rigid sensor fusion scheme.

I. INTRODUCTION

With the recent advances in robotics, autonomous mobile
robots are now operating in a broad range of domains. Some
well-known examples include industrial plants [1], urban
traffic [2] and agriculture [3]. The navigation system required
to perform efficiently in such scenarios needs to be robust to a
number of operational challenges such as obstacle avoidance
and reliable localization. When the same vehicle/platform
navigates through significantly different environments as part
of its route, navigation can be even more challenging.

The site shown in Figure 1 is representative of this situation.
The highlighted routes represent operation paths on which
an autonomous vehicle should navigate to perform a given
task. The image shows that different regions of the routes
present distinct structural characteristics. In the middle path,
for instance, the vehicle must travel through a heavily built-up
area, with large structures and metallic sheds. In contrast, in
other sections, the path is unstructured and mostly surrounded
by vegetation, including off-road terrain.

Sensors are required in robotic navigation to obtain
information about the robot’s surroundings. Since each sensor
has advantages and drawbacks, a single sensor is often not
sufficient to reliably represent the world, and hence fusing
data from multiple sensors has become a common practice.
Probabilistic techniques, such as the Kalman filter [4] and the
Particle filter [5], enable sensor fusion by explicitly modeling
the uncertainty of each sensor.
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Fig. 1: Satellite view illustrating a heterogeneous operation
space. The red path were used to train the CNN to classify
the environment, while the white was used to validate its
performance. Image from Google Maps.

These are well-known approaches that work well when the
navigation takes place in quite homogeneous environments.
However, in challenging and mixed scenarios, as described
above, employing rigid statistical models of sensor noise
may provide a sub-optimal solution. An environment-aware
sensor fusion, which dynamically adapts to each different
environment, can allow a better sensor fusion performance.

Previous work using teach and repeat approach illustrated
the effectiveness of such adaptive scheme [6], but it is limited
to a previously defined path. To overcome this constraint, we
propose applying convolutional neural networks and camera
images to recognize typical navigation environments (indoor,
off-road, industrial, urban, etc.) and intelligently associate
that information to the best sensor-fusion strategy. This is the
gist of the method proposed in this paper.

The proposed method is implemented and evaluated in
an autonomous ground vehicle, a full size utility vehicle
shown in Figure 4. To validate the performance of the
adaptive sensor fusion scheme, we employed it to odometry
estimation. In the presence of ground truth, provided by an
reliable localization system, the error estimation in odometry
becomes trivial, which makes the performance evaluation of
the proposed method simple and accurate. Figure 2 shows a
block diagram of the proposed method. Experimental results
show a reduction in the errors in comparison to using a rigid



Fig. 2: Architecture overview of the Environment-Aware
sensor fusion applied in odometry. This caption does not
explain adequately the contents of the figure. I would be fine
if the main text did, but there is also no clear explanation
there

combination of the sensors.

A. Related Work

Dividing the navigation map to considerate different
domain features has been used earlier to enhance robotics
performance [6]–[9]. In this approach, usually known as
the “teach and repeat” paradigm, the navigation map is
visited in an initial phase in which the environment is
learned. Then, it is divided in sub-maps which are used
later to adapt the behavior of the robot in each sub-map. This
paradigm was employed in [10] to enhance navigation of
longrange, autonomous operation of a mobile robot in outdoor,
GPS denied, and unstructured environments. However, using
submaps to change system behavior can only be used in
locations previously visited. That is, the behavior of the
system is not defined in unknown places, even if they are
similar to those previously visited.

In Romero et al. [6] an adaptive sensor fusion technique is
applied for obstacle detection. It performs better than using
each sensor alone or a covariance-based weighted combination
of them. The authors have driven an automated vehicle
through a heterogeneous operation environment and quantified
the performance of each obstacle-detecting sensor along
the trajectory. This information is used by an environment-
aware sensor fusion (EASF) strategy that provides different
confidence levels to each sensor based on its location along
the path. The method uses a look-up table that relates the
vehicle’s location with the best sensor configuration.

Burgard et al. [11] also proposed the use of an adaptive
approach to obstacle detection for mobile robots. A random
forest classifier was trained to identify each environment
using local geometrical descriptors from a point cloud, so it
can classify places not visited during the training. The work
presents a classification metric, but does not elaborate on how
the obstacle detection was improved by the adaptive strategy.

An adaptive scheme for robot localization was used by
Guilherme et al. [12]. The robot is equipped with a short-range
laser scanner and a Global Positioning System (GPS) module.
A histogram of the distances between occupied cells on an
occupancy grid from the laser scanner was used to classify
the environment in outdoor or indoor using the k-nearest

Fig. 3: Example of why the absolute difference is suboptimal.
[14]

neighbor algorithm. In outdoor environments the localization
system would rely only on the GPS module, while it uses
the laser scanner and a previously built map indoors.

In 2016, NVIDIA’s researchers [2] have trained a con-
volutional neural network to map the raw pixels from a
front-facing camera to steering angles to control a self-
driving car on roads and highways (with or without lane
markings). According to the authors, the end-to-end learning
leads to better performance than optimizing human-selected
intermediate criteria, like the lane detection. This work has
shown the great potential of convolutional neural networks to
face the highly challenging tasks of autonomous driving. Zhou
et al. [13] have shown that a properly trained convolutional
neural network can identify different environments based only
on visual information, using the so-called “deep features”.

These related works show that adding information about
the environment can lead to more robust systems, able to
operate on mixed scenarios. We combine the teach and repeat
paradigm with visual scene classification trying to optimize
the sensor fusion performance. As result our system assign
the optimal sensor configuration to each scene based only on
visual information.

II. ENVIRONMENT-AWARE SENSOR FUSION

This section describes the framework for adaptive sen-
sor fusion, exploiting visual information of the operation
environment.

We also provide a performance metric used to compare
the each odometry method employed and to define the best
sensor configuration to each environment.

A. Performance metric

We chose the metric proposed by Burgard et al. [14] to
compare the employed odometry methods. This metric was
proposed as an objective benchmark for comparison of SLAM
approaches. Since it uses only relative geometric relations
between poses along the robot’s trajectory, one can use it to
compare odometry methods without loss of generalization.

In the presence of a ground truth trajectory, it is usual to
get the odometry error by the absolute difference between
the estimated poses and the ground truth. Burgard et al.
[14] claims that this metric is suboptimal because an error
on the estimation of a single transition between poses could
increase the error in all future poses. To illustrate this behavior,
suppose a robot moving in a straight line and an perfect pose
estimation, but with a single a rotation error somewhere, let
us say on the middle of the trajectory, as shown on Figure 3.

Using the absolute difference would assign a zero error
to all the poses in the submap 1, as expected considering



an error-free pose estimator. But it would assign a non-zero
error to all the poses in the submap 2, even if the error is
present only in the transition between two particular poses,
shown as a bold arrow in the figure.

The proposed metric is based on the relative displacement
between the poses. Given two poses xi and xj in a trajectory,
δi,j is defined as the relative transformation that moves from
pose xi to xj . Given x1:T , the set of estimated poses, and
x∗1:T , the ground truth ones. The relative difference is defined
in (1) as the squared difference between the estimated and
the ground truth transformations, respectively δ and δ∗. In
the example from Figure 3, the relative error is non-zero only
for the transformation represented by the bold arrow.

ε(δ) =
1

N

∑
i,j

(δi,j 	 δ∗i,j)2 (1)

By selecting the relative displacement δi,j , one can high-
light certain properties. For instance, by computing the relative
displacement between nearby poses the local consistency is
highlighted. In contrast, the relative displacement between far
away poses enforces the overall geometry of the trajectory.
In the experiments we used a mid-range displacement, big
enough to include some big scale geometry information while
highlighting local consistency.

We used a 10 seconds time interval to compute the
relative transformations, which resulted in a 25 meters average
distance between each pose when the vehicle was moving in
a straight line. The ground truth trajectory was provided by
a 3D LIDAR localization system. It is based on the SLAM
algorithm proposed by Bosse and Zlot [15] operating in a
previously mapped area.

B. Informed sensor fusion strategy
We define a sensor configuration λ as the combination of

weights describing the reliability of each sensor. Considering
a system equipped with n different sensors, the sensor
configuration would be a vector of n elements as follows.

λ = [α1, α2, ..., αn]
T ∈ Rn, with αi ∈ [0, 1] (2)

Where αi represents the reliability of the sensor i. If
it is equal to zero the sensor will not be used in the
fusion and if it is equal to one the sensor will be fused
using the provided error model. Intermediate values should
proportionally increase the uncertainty of the sensor.

Appropriately changing the sensor configuration can pre-
vent the hazardous situation where the system is very
confident about a bad estimation or the suboptimal situation
where the system defines an unrealistic high uncertainty to
a sensor in all scenarios to compensate for its high error in
some domains.

As described in Section I-A, the teach and repeat paradigm
can be used to select a suitable sensor configuration, but in
this work we propose the use of visual scene classification.

III. OVERALL SYSTEM DESCRIPTION

In this section we describe the experimental set-up and
some implemented methods.

Fig. 4: The robot used, a John Deere Gator holding multiple
sensors.

A. Vehicle Description

The robot is built upon a John Deere Gator, an electric
medium-size utility vehicle (see Figure 4). The vehicle has
been fully automated at CSIRO [16], [17].

The vehicle is equipped with a Velodyne VLP-16 Puck
LIDAR, that provides a 360 degrees 3D point cloud, which
is used for localization and obstacle avoidance. Besides that,
the vehicle has four safety 2D LIDARs (one on each corner).
Anytime an object is detected by the lasers inside a safety
zone, an emergency stop signal is triggered.

As usual in wheeled robots, the Gator has a wheel odometer,
made of a metal disc pressed onto the brake drum and
an inductive sensor. In addition to that, a visual odometry
algorithm was implemented using as input images from an
Intel RealSense D435 [18] mounted front facing in the vehicle,
details are provided in Section III-B.

The vehicle holds two computers, one of them used for the
low-level hardware control and the other one for high-level
tasks, such as localization and path planning. The integration
between the computers and the sensors is done using the
Robotics Operating System (ROS) [19].

B. Visual Odometry

Visual Odometry(VO) is the process of estimating the
movement of a robot given a sequence of images from a
camera attached to it. The idea was first introduced in 1980
for planetary rovers operating on Mars [20].

The classical approach to VO relies on extracting and
tracking visual features, and then combine the relative motion
of this features in sequential images with the camera model
to estimates it’s movement. The process of simultaneously
localize the robot and map the environment using visual
information is called Visual SLAM.

A popular Visual SLAM implementation is the
ORB SLAM2 [21], which uses the ORB feature detector.
ORB SLAM2 is an open-source library for Monocular,
Stereo and RGB-D cameras, that includes loop closure and
relocalization capabilities. We disabled the loop closure and
relocalization treads to get a pure visual odometry behavior.

The ORB SLAM2 classifies the detected features into close
and far key points applying a distance threshold. The closest



Fig. 5: Sample image after the Adaptive Histogram Equaliza-
tion, the green dots stands for the detected ORB features.

key points can be safely triangulated between consecutive
frames, providing a reliable translation inference. On the other
hand, the farthest points tend to give a more accurate rotation
inference, since they are supported by multiple views.

We modified the library to provide a ROS friendly interface.
In addition to a standard RGB sensor, the Intel RealSense
D435 presents a stereo pair of infrared (IR) cameras and an
IR pattern projector used for RGB-D imaging. The stereo
IR image pair was used for the visual odometry, since it
performed better than the RGB-D sensors while outdoors.

The images were equalized before the feature extraction.
The histogram equalization is a popular technique in image
processing, used to enhance the image’s contrast. It often
performs poorly when the image has a bi-modal histogram,
images that have both dark and bright areas. This effect was
minimized using the Contrast Limited Adaptive Histogram
Equalization (CLAHE) algorithm.

Enhancing the contrast made it easier to find the visual
features, making the system more robust to challenging light
conditions, inherent of the outdoor operation. The Figure 5
shows an image after the CLAHE, with green dots indicating
the extracted ORB features. The features spread over the
image, with some key points close to the camera, enhancing
the translation estimation.

A demo video of the visual odometry running on the Gator
vehicle is available. 1

C. ROS robot localization package

The Extended Kalman Filter (EKF) [22] is probably the
most popular algorithm for sensor fusion in robotics. Fusing
wheel and visual sensors is a classic combination for odometry
[23], but there are other options, such as Inertial Measurement
Unit (IMU), LIDAR, RADAR, and Global Positioning System
(GPS).

The ROS package robot localization [24] provides an
implementation of a nonlinear pose estimator (EKF) for robots
moving in 3D space. The package can fuse an arbitrary
number of sensors. It gets as parameter a binary vector
indicating which sensor should be fused and which one should

1https://youtu.be/I2bq0zsCuME
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Fig. 6: First row shows images used to train the CNN and
the second images used to validate the performance.

be ignored. This vector can be seen as a particular case of
sensor configuration as defined in Section II-B.

IV. VISUAL ENVIRONMENT CLASSIFICATION

The environment classification was treated as a classical
supervised image classification problem. The operation area
shown in Figure 1 was divided into three classes named
‘industrial’, ‘parking lot’ and ‘off-road.’

In the industrial and the parking lot, the surface is even,
made of asphalt or concrete. In this scenario the wheel
slippage is low and as consequence the wheel odometry
presents low error. Even if the ground does not show many
visual features, the visual odometry performs properly relying
in the far key points. Hence, both sensors were fused to
estimate the odometry.

On the other hand, the off-road environment the flatness
assumption of man-made environments does not hold, which
allied with the increase in the wheel slipped results in poor
wheel odometry performance. In contrast, the visual odometry
can benefit from the feature richness of the uneven terrain.
So, only the VO is used in this scenario.

We divided the campus in two closed loops: the first one
is used to collect the image to train the CNN and the second
one to validate the network’s classification performance,
respectively illustrated by the red and white paths in Figure
1. Both paths present segments on the three classes, but the
second path was not exposed to the CNN during the training
phase.

The Figure 6 shows samples of images used in the
training and testing sets. One can see the challenging lighting
conditions, inherent of the outdoor operation.

A pre-trained implementation of the VGG16 [25] was used
to classify the images. The VGG16 is a 16-layer network
used by the VGG team in the ILSVRC-2014 competition.
The network was originally trained using 244× 244 images
assigned to one of the thousand labels present in the Imagenet
Dataset [26]. By the process of transfer learning, we freezed
the convolutional layers to train our classifier using a custom
built dataset of the three classes described above.

The transfer learning relies on the assumption that the
features learned to solve a particular problem on computer



vision might useful to solve similar ones. The main advantages
of the transfer learning are the smaller training time and data
requirements.

We used ten thousand images of each label. Since the
camera generates around thirty images per second, it is
not difficult to collect this many images. The images were
collected in different days and times of the day, increasing
the statistical significance of the dataset.

At the beginning of the training, the network struggled in
the transition between each scenario and some segments on
the off-road environment. By inspecting of the classification
errors looking for hard-negatives, we detected that the errors
were mostly pictures taken off-road but showing buildings,
cases that the network classified as industrial. After collecting
more data in this circumstance, the network was able to yield
a good generalization.

The classification using the neural network was made at
15Hz on the same computer used to run the visual odometry.
Assuming that the environment does not change at a high
frequency, the real-time execution is not a requirement of the
classifier. Thus the prediction could be made less often to
reduce the computational burden.

V. EXPERIMENTS

The experimental site was divided into two closed loop
paths. The Figure 1 shows path one in red and path two in
white. The path one was visited during the data collection to
train the classifier, as described in section IV. Considering
the high accuracy achieved on the network validation, we
expect a near optimum classification and as consequence the
same sensor fusion behavior on both paths. We collected six
and four samples from the path one and two respectively.

The raw measurements of all the sensors were saved
during the data collection. After that, we estimated offline the
vehicle’s trajectory using each sensor alone, a rigid fusion of
the wheel and visual odometry and the environment-aware
sensor fusion strategy described before. These estimated
trajectories were compared with the ground truth poses to
get the relative error as described in section II-A.

VI. RESULTS

A. Scene Classification Accuracy

After the data collection and the training described in Sec-
tion IV, the network achieved 98.7% classification accuracy
on the training set (red path) and 97.2% on the validation
set (white path). This high accuracy might be seen as a
overfitting since both the training and validation set were
collected in the same campus. The accuracy on an extremely
different landscape would probably be much lower. But that
is also a limitation on the teach and repeat approach. By using
convolutional neural networks we introduce to the system
the ability operate in places never visited before, the white
path was not visited during the training phase, and to adapt
to new domains by the exposing it to new data.

Fig. 7: Relative error in the second path.

Sensor Mean Relative Error (m)
Wheel Odometry 3.010(±0.568)
Visual Odometry (ORB SLAM2) 0.541(±0.088)
Wheel Odometry + Visual Odometry (EKF) 0.344(±0.104)
Environment-aware Sensor Fusion (EASF) 0.348(±0.097)

TABLE I: Mean relative error in the training path.

B. Odometry accuracy

Figure 7 shows the relative error for each odometry method
on a particular sample from second path. The error in the
wheel odometer is not on the plot to improve the visualization
since it is an order of magnitude bigger. As expected, the
error in the environment-aware approach follows the trend
of the approach with the smaller error on each time interval.

The Tables I and II presents the average relative error in
the paths one and two respectively. Using only the wheel
odometry is the worst option on both. In the red path, the
EKF (rigid sensor fusion) improved the odometry estimation
in 57.2% when compared with the visual odometry, while
the EASF approach improved only 55.4%. So the EASF as
1.8% less accurate than the rigid sensor fusion scheme.

However, on the white path, the rigid fusion resulted in
a 34.2% increase in the error due to the bad performance
of the wheel odometry on this scenario. This noise does not
affected the EASF scheme, that reduced the error by 31.1%
in relation to the VO. So, the error in the EASF is more the
50% smaller than the error in the EKF.

This difference in the average performance might be caused
by the low presence of the off-road scenario in the first path.
It is just a small section in a big loop. On the other hand,
the second path has near equally distributed sections of both
off-road and on-road domains.

Since the covariance on the wheel odometry was measured
on the asphalt and concrete, it is not a good representation
of the error while driving off-road. This overconfidence leads
the rigid fusion to bad estimations.

Sensor Mean Relative Error (m)
Wheel Odometry 2.722(±0.370)
Visual Odometry (ORB SLAM2) 0.492(±0.090)
Wheel Odometry + Visual Odometry (EKF) 0.650(±0.247)
Environment-aware Sensor Fusion 0.361(±0.104)

TABLE II: Mean relative error in the testing path.



The results in the second path proved that using the visual
information to switch between odometry sources according to
the environment might lead to a better performance than
always fusing all available sensors. In more challenging
operational spaces, for instance paths including mud and
gravel, our approach might perform even better.

VII. CONCLUSIONS

A new approach to dynamically adapt a sensor fusion
strategy for robot autonomous navigation based on the sur-
rounding environment features were presented. Convolutional
neural networks were trained to recognize images of the
environment on which the robot navigates and based on this
information the system adapts its sensor fusion strategy.

To validate the concepts, we also presented a practical
implementation of the system on an autonomous vehicle. It
is shown that, in environments where the sensor behavior
changes, it is possible to select a more suitable sensor con-
figuration using visual information to improve the odometry
capabilities of the system. Experimental results have shown
an improvement in performance when compared to a rigid
sensor fusion approach.

The results presented here only consider the use of two
sensors, so future work will add more sensors to the current
framework. Further, the methodology can also be directly
extended to localization and mapping. Creating ”informed”
mapping strategies for long-term localization.
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