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Abstract— Real-time obstacle detection is a key component of
autonomous vehicles. In this context, low obstacles are particu-
larly challenging, as they are often discarded by traditional
algorithms. Curb detection methods that can potentially be
suitable for the problem usually target roads with clearly
defined curbs and sidewalks. We propose a real-time algorithm
for the detection of low obstacles (including, but not restricted
to curbs), merging 2-D and 3-D information from stereo
imaging. A set of candidate object lines is extracted based on
their combined 2-D and 3-D features, tracked over time and
clustered according to a novel similarity metric. Finally, a 3rd

order polynomial spline is fitted to each cluster to represent
the obstacle. The proposed system can deal with noisy and
incomplete point clouds and keeps the model assumptions to a
minimum. To evaluate the algorithm, a new stereo dataset is
provided and made available online. We present experiments
in different scenarios and lighting conditions, illustrating the
applicability of the method.

I. INTRODUCTION

In the fields of autonomous vehicles and ground robots, the
detection of obstacles is an essential element for higher-level
tasks such as navigation and path planning. The problem has
attracted significant attention from the robotics community
over the years. A number of approaches have been proposed
to tackle this key issue, from simple algorithms that detect
an obstacle and stop the robot, to more complex methods
that determine the position and size of the obstacle, preparing
strategies to navigate around it. Obstacle detection algorithms
are often limited to objects with a certain height above ground.
Very low obstacles with height close to the ground level, such
as curbs, pallets, or beams, may be hard to distinguish from
the ground, but can still represent important obstacles. In this
work, we present a stereo-vision based method to efficiently
detect low obstacles, combining 2-D and 3D data.

Among low obstacles, the detection of curbs has drawn
significant attention, being used as a support system in
manned vehicles or as a localization cue for autonomous
cars. In the literature, apart from vision, inputs from a variety
of sensors have been used to detect curbs, such as LIDAR,
time-of-flight and visual cameras. Time-of-flight cameras and
LIDAR sensors are accurate and have low noise levels. As they
generally require less computational resources in comparison
to standard cameras, extensive research has focused on these
devices. Research focusing on visual sensors is much rarer.
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A. Related Work

Pollard et al. [1], for example, use three LIDAR sensors
with different orientations on a personal mobility vehicle to
detect curbs and other impassable obstacles of various shapes.
Zhang [2] detects the road edges in an inclined LIDAR
measurement by identifying local height minima and maxima.
Another approach [3] relying on an inclined LIDAR sensor
uses an Extended Kalman Filter to simultaneously filter and
segment the data. The lines best fitting to this segmentation as
well as to the orientation of the car are chosen as curbs. This
approach was improved by adding a monocular camera to
the setup [4]. A different framework to combine LIDAR and
cameras was proposed by Aufrère et al. [5]. An inclined laser
is used to detect a curb in its measurement plane, at a certain
distance from the vehicle. The camera image is then used to
expand the identified curb point along the brightness edge
defined by the point. The use of a time-of-flight camera for
the detection of curbs and ramps has also been proposed [6].
Using an adaption of a Random Sample Consensus algorithm
(RANSAC) [7], the authors robustly identify the artifacts
present in the measured point cloud.

The sensors used in [1]- [6] are rather expensive and high-
maintenance. Moreover, most LIDAR sensors only provide 2D
measurements in a plane, and require mechanically activated
mounts or the appropriate motion to provide 3D data. Stereo
cameras, on the other hand, are cost-efficient and can provide
2D and 3D information. Approaches to detect curbs from
stereo vision are less common. In earlier works, Se and Brady
[8] detect clusters of straight, parallel lines in 2D space using
the Hough transform for each one of the images. With the
disparity information of the two images, two ground planes in
3D space can be fitted, one to the outside and one to the inside
region of the curb. Regarding speed, ‘v-disparity’ images for
obstacle detection can be very efficient [9], however they
struggle to identify low objects, as there is not sufficient data
for the vertical histogram.

Turchetto and Manduchi [10] use a weighted Hough
transform in one of the images to extract one predominant
curb line per scene. The weights for the Hough transform are
given by the dot product of the brightness gradient and the
elevation gradient. In a follow-up, Lu and Manduchi [11] use
a curvature index (from range data) as a weight for the Hough
transform to determine candidate lines (peaks of the Hough
transform). Finally, the 3D points of the candidate line are
refined using regression, and the ends of the curb segments are
found. The algorithm presented in Siegmund et al. [12] uses
a powerful stereo-vision engine to calculate a dense, high-
accuracy 3D point cloud. A Digital Elevation Model (DEM)



is computed from this data and a model with a street surface
and a sidewalk surface is created. In an iterative process, the
parameters of these surfaces are estimated from the DEM,
using Conditional Random Fields (CRF) classification. A
similar framework using CRF that is extended to posts, walls,
fences, etc, has shown good results [13]. Using the most
probable path of the vehicle has also been considered [14],
which is suitable when structured navigation can be assumed.
Oniga et al. [15] detect edges in a DEM based on dense
stereo vision. Temporally persistent edges are classified as
candidate curb points, and a Hough accumulator is used
to extract straight curb segments. The largest curb segment
is iteratively extended towards smaller segments to account
for curved curbs as chain of segments. This approach was
altered later by adding cubic polynomials as models, based
on the 3D data [16]. A DEM is built and only elements
with a high enough magnitude of the height gradient are
considered. A 3

rd order polynomial is fit to these points
using a RANSAC algorithm. The polynomial is re-analyzed
to find the extremities of the curb and fill small gaps. The
robustness of this approach for poor 3D data can be further
enhanced using temporal integration [17]. In a global frame,
a cubic spline can thus be fitted to the DEM points that were
used for computing each single frame polynomial. Kellner
et al. [18] detect curbs independently of their orientation in
relation to the car, which makes the solution more general.

Another methodology proposed by Oniga et al. [19] detects
obstacles, the road surface and traffic isles by analyzing solely
the 3D structure of the environment without any visual priors.
In a first step, a DEM is created and a quadratic road surface
model is estimated using a combination of RANSAC and
region growing. Then, the density of 3D points per surface
unit is analyzed: regions with high densities are classified as
obstacles, as they are likely to be due to vertical structures.
Regions that are not classified as obstacles but have a height
above the ground plane within a certain bracket are classified
as traffic isles, and regions close to the road surface estimate
are classified as road surface. Finally, a temporal persistence
filter is applied to check for inconsistencies in the time domain
and thus eliminate outliers. This algorithm, however, uses
a dense 3D-information generated by an embedded stereo-
vision system. The requirement for the quality of this data
(subpixel resolution, dense 3D information for smooth road
surfaces) is thus very high.

B. Contribution

The approach presented in this paper uses stereo vision for
sensing. A 3D point cloud is calculated from the disparity
of the stereo images, downsampled into a DEM, followed
by the estimation of a linear ground plane. Aside from the
3D information, a set of 2D-lines is extracted from the left
camera image using a combination of edge detection and
a probabilistic Hough transform. These lines are projected
onto the ground plane and the DEM points in their vicinity
are examined. If these points suggest that the line is close
to the ground and that there is a height discrepancy (in 3D)
between the left and the right side, the line is accepted as

obstacle line. Using a novel similarity metric, the obstacle
lines are efficiently clustered. Each cluster is reduced to
a cubic polynomial spline using a least-squares approach,
embedding several features of the clusters in the optimization
process.

The indirect approach - using lines as primitives first
and only subsequently clustering them and estimating the
polynomial parameters - is advantageous under limited range
data, as it only needs a small number of range points to
support the lines found in the 2D data. Furthermore, in
contrast to curb detection algorithms [8] - [19], the model
assumptions for this approach are not targeted solely on curbs,
but on low obstacles in general. It was initially developed for
the detection of low obstacles in an industrial environment,
where in addition to curbs, obstacles such as pallets or beams
are frequently present. The motivation behind this targeted
scenario lies in the fact that, although the use of driverless cars
on public roads is still a number of years away of becoming
a reality, in industrial areas autonomous ground vehicles are
incrementally gaining space. Common tasks in this domain are
material handling, mining operations, carrying load between
different areas of a production facility, and the transportation
of objects. As illustrated by our experiments, the broader
spectrum of detected obstacles make the algorithm applicable
in industrial environments, and can be applied in combination
with traditional “high obstacle” detection methods.

This paper is organized as follows. An overview of the
algorithm is given in Section II. Then, the steps of the
algorithm are described: the construction of a DEM and
the ground plane estimation (Section III), the detection of
obstacle line candidates (Section IV), the clustering of the
obstacle lines and the fitting of curves to the cluster (Section
V). Section VI presents the experimental results, followed by
relevant conclusions in Section VII.

II. OVERVIEW OF THE ALGORITHM

The proposed algorithm relies on three inputs: (i) A dense
3D point cloud from a stereo-vision system calculated with
Efficient Large-Scale Stereo (ELAS) matching algorithm [20],
(ii) a rectified image from one of the cameras, and (iii) any
type of odometry information (e.g., visual odometry, wheel
odometry, etc.). We employ visual odometry in this work.

A. Criteria

For detection purposes, we assume that a low obstacle
meets the following criteria:

• A low obstacle (such as a curb, for example) contains
a piecewise straight line in any direction parallel to
the ground. This assumption can be interpreted as low
obstacles being “cut off” at a certain height instead of
being high enough to be detected by an obstacle detection
algorithm. This “cut-off” line, henceforth called obstacle
line, can be detected in the 2D image.

• The obstacle line(s) of a low obstacle is (are) close to
the ground.

• The heights above ground on the left and on the right
hand side of the obstacle line must differ by a minimum
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Fig. 1. Outline of the main steps in the obstacle detection algorithm. Each
block apart from the visual preprocessing is discussed in this paper. The
DEM and the ground detection in Section III, the candidate detection in
Section IV, the clustering in Section V and the curve fitting in Section V-C.

threshold �. This criterion identifies lines that delimit
a step function, such as obstacles that stick out from
the ground, and discards other lines such as markers or
shadows.

B. Evaluation

These criteria can be evaluated by the following rules:
1) Firstly, a DEM is computed and a linear estimation of

the ground plane is made using a RANSAC algorithm.
2) Secondly, on a frame-to-frame basis, a set of potential

obstacle lines is elicited based on the criteria mentioned
in Section II-A, using the DEM as well as the 2D image.
This step is henceforth denoted ‘candidate detection’.

3) Thirdly, the potential obstacle lines of multiple frames
are compared to each other. An accumulation of
similarly oriented obstacle lines is defined as a cluster.
Isolated potential obstacle lines are considered to be
false positives and are rejected.

4) Finally, three cubic splines are fitted to each obstacle
cluster, a skeleton line and two error boundaries (left
and right). It is assumed that the actual curb lies within
the error boundaries.

A summary of these steps is shown in Figure 1, and each
part of the algorithm is detailed in the following sections.

III. DIGITAL ELEVATION MODEL AND GROUND
DETECTION

This section discusses preliminary steps required by the
algorithm. This includes the computation of a DEM from the
3D point cloud input (Figure 2(b)) and a linear ground plane
estimation based on those points of the DEM that are assumed
to lie on the ground. A DEM is a discretized representation of
elevation data, where the 3D points are sampled into a fixed

(a) (b)

Fig. 2. (a): Model of the vehicle with its coordinate system: x-axis (red),
y-axis (green) and z-axis (blue). (b): The 3D point cloud used for the DEM.

(a) (b)

Fig. 3. (a): Top view of the DEM point cloud (note the grid structure). (b):
Front view of the DEM.

grid structure. The estimation of the ground plane serves as
a reference for the algorithm when the lines in 2D space are
compared to the points in 3D space (cf. Section IV).

A. DEM

The coordinate system used has its origin on the ground
in front of the vehicle, laterally centered. The x-axis points
to the left, the y-axis upward and the z-axis to the front in
the forward direction, as illustrated in Figure 2(a).

To reduce the computational cost for real-time operation,
the points of the 3D point cloud are transformed into a DEM
(cf. Figure 3). As often done in literature [19], a rectangular
grid (in our implementation we use: length=40 m, width=13
m, resolution=0.1m) of equally distributed cells is set up
in the x-z-plane in front of the vehicle. For each grid cell,
the maximum height of the 3D points falling into the cell
defines the height of the cell. The new point cloud that is now
used (instead of the dense 3D point cloud) contains a point
for every non-empty grid cell, with the center of the cell as
the x- and z-coordinates, and its height as the y-coordinate.
Although other metrics (such as the mean height of the 3D
points within a cell) could be used to define the cell height,
the height of the highest 3D point provides robustness against
outliers in the negative y-direction.

B. Identification of Ground Points in the DEM

Estimating the ground plane based on the whole DEM
presents a drawback: instead of the actual ground plane, the
result of the RANSAC estimation (described in Section III-C)
can be a building wall or a slanted surface next to the ground
plane. This issue can be overcome by only feeding to the
RANSAC algorithm a subset of DEM points that are very
likely to be on the ground. Starting from points in front of
the vehicle, the ground points are generated according to:



• The points in the first two non-empty rows in front of
the vehicle are declared ground points.

• For every successive row, the previous non-empty rows
are assessed. Every point that has a similar height to its
predecessor is declared as a ground point.

C. Estimation of Ground Plane Parameters

Although roads usually present some degree of curvature,
we assume a linear model for our ground estimation. This is
a simplification that is commonly used [8], [10], [11] and has
the advantage of a substantially lowered complexity of the
algorithm. A RANSAC algorithm with a linear plane model
is run on the subset of ground points to yield the ground
plane estimate. Finally, a median filter in the time domain is
applied to a number N

med

of frames. This removes outliers
and thereby avoids jerks.

IV. CANDIDATE DETECTION

The left rectified input image I is used to extract the visual
information. I is cropped to its lower half and enhanced with
standard gamma correction [21] defined by the exponent � for
a better performance in shadowy areas, yielding the image
I
�

. A Canny edge detector is applied to I
�

to create the
Canny image I

C

, a binary image of edges. Then, applying
the probabilistic Hough transform to I

C

, a set of Hough lines
H is formed. Subsequently, the depth information of the 3D
point cloud must be transferred onto the lines of H in order
to assess their aptitude of being part of an obstacle. For this
goal, one possibility is to project the 3D points to the 2D
image and consider the points close to the line. However, even
though these points are close in the 2D space, they are not
necessarily close to the line in 3D. Another way of associating
the 3D points with the 2D lines is to project the lines onto the
ground plane in 3D space and assess the points in the vicinity
of the line in 3D space. The downside in this case is that
lines far off the ground will yield faulty projections. A two-
step assessment using both of these methods overcomes their
respective drawbacks. This assessment includes a selection
step, where the points are projected onto 2D, and a validation
step, where the lines are projected onto the ground plane in
3D. In both of these steps, each line is evaluated based on
the subset of points assigned to them. The evaluation process
is described in more detail in Sections IV-A and IV-B.

(a) Canny image with the lines de-
tected by the probabilistic Hough
transform (blue). The test window in
2D space is indicated in red.

  

3D

(b) Gamma-corrected lower half of
the left image. For illustration, a
line detected by the Hough transform
(blue) is projected into the image and
the test box around it is indicated in
red.

Fig. 4. Illustration of the candidate detection. Each line detected by the
probabilistic Hough transform (blue) in the Canny image (b) is assessed
twice: A first time based on the subset of points falling into a test window
in 2D space (b), and a second time based on a test box in 3D space (a).

A. Selection of Ground Lines

The set of 3D points P in the point cloud is back-projected
onto the image plane to generate the set P 0 of points in pixel
coordinates. Then, for each Hough line ¯

h

i

in H:
• The subset P 0

h̄i
of points in P 0 that are contained in

a test window of a given width w

window

around ¯

h

i

is
determined (cf. Figure. 4(a)). The corresponding subset
of points in 3D-space is denoted P

h̄i
.

• For subset P
h̄i

, the mean µ

h̄i
and the variance �

2
h̄i

of
the height above ground (given by the ground plane
estimate) are determined.

• If �2
h̄i

is below a certain threshold ↵, the height variance
is small and it is assumed that ¯

h

i

is horizontal or
close to horizontal relative to the ground plane estimate.
Additionally, if µ

h̄i
is below a certain threshold , the

line can be considered to be close to the ground plane
estimate. If both of these conditions are fulfilled, it is
assumed that a projection of the line onto the ground
plane will yield a satisfactory result, based on extensive
evaluation. The line is thus added to the set of ground
lines G. Otherwise ¯

h

i

is rejected.

B. Validation of Obstacle Lines

The set of ground lines G (in pixel coordinates) is projected
onto the estimated ground plane (in 3D-space) forming the
set of 3D-lines G0. For each line ḡ

0
i

in G0:
• The subset of points P

ḡ

0
i

that are contained in a test box
of width w

box

and height h
box

around ḡ

0
i

is determined
(Figure 4(b)).

• Firstly, with the new subset of points P
ḡ

0
i

the findings
in the selection step are verified (mean µ

ḡ

0
i

and variance
�

2
ḡ

0
i

of height below their respective thresholds ↵ and ,
as discussed in Section IV-A). If this is not the case, ḡ0

i

is deleted from G0.
• Again, for subset P

ḡ

0
i
, the mean height above ground

on the left hand side and on the right hand side of the
line (µleft

ḡ

0
i

and µ

right

ḡ

0
i

) are determined.
• If the absolute difference |µleft

ḡ

0
i

� µ

right

ḡ

0
i

| is above a
threshold �, it is concluded that the line originates from
a step (obstacle, curb or other). Hence,ḡ0

i

is accepted
as a close-to-ground obstacle and added to the set of
obstacle lines in 3D space L. These obstacle lines are the
candidates that are now clustered. If |µleft

ḡ

0
i

� µ

right

ḡ

0
i

| is
below the threshold, it is assumed that the line represents
something flat on the ground (e.g. shadow, lane marker),
and thus it is eliminated as a candidate.

V. CLUSTERING AND CURVE FITTING

The obstacle lines detected so far are simply an accumula-
tion of snippets of the actual obstacle and may contain false
positives. A more accurate representation of the obstacle
with fewer false positives can be obtained by appropriately
clustering the lines. To this end, a metric is defined to measure
the dissimilarity between two obstacle lines. Based on this
metric, it is assessed whether the lines are similar enough
to be considered as belonging to the same obstacle, and if



so, clustered together. Such clusters are defined as actual
low obstacles. Single lines and clusters with a small number
of elements are considered false positives and are rejected.
The details of the clustering algorithm are discussed in this
section.

A. Metric

The orientation of the obstacle lines is an important infor-
mation. For measuring the dissimilarity between two obstacle
lines ¯

l

i

and ¯

l

j

, common metrics like the Euclidean distance
are not well suited as they lack orientation information. A
custom metric d using both distance and orientation as inputs
is defined as the weighted sum of three quantities: The lateral
distance d

lat

, the longitudinal distance d

long

and angle ↵:

d[

¯

l

i

,

¯

l

j

] = w

lat

d

lat

[

¯

l

i

,

¯

l

j

] + w

long

d

long

[

¯

l

i

,

¯

l

j

] + w

✓

|✓[¯l
i

,

¯

l

j

]|
(1)

where w

lat

, w
long

and w

✓

are the weight parameters and |.|
represents the absolute value. The parameters are tuned based
on experimental evaluation on training sets, and are further
discussed in Section VI. The distances are defined as:

1) Lateral Distance: The lateral distance is defined as the
maximal perpendicular distance from an end-point of one
line to another line. It can be found as follows:

d

lat

[

¯

l

i

,

¯

l

j

] = max(dist(p1
l̄i
,

¯

l

j

), dist(p2
l̄i
,

¯

l

j

),

dist(p1
l̄j
,

¯

l

i

), dist(p2
l̄j
,

¯

l

i

))

(2)

where

dist(pe

l̄i
,

¯

l

j

) = |[(pe

l̄i
�m

l̄j
)� (pe

l̄i
�m

l̄j
) · v

l̄j
] · v

l̄j
| (3)

and pe

l̄i
is the endpoint e (e = 1, 2) of line ¯

l

i

, m
l̄j

denotes
the midpoint of line ¯

l

j

, and v
l̄j

stands for the unit vector
in direction of line ¯

l

j

. The operator · corresponds the dot
product between two vectors.

2) Longitudinal Distance: The longitudinal distance is
found by projecting the end points of one line onto the other
line and calculating the distance between the midpoint of
the line and the projected points. If one of the projected end
points lies between the end points of the second line, the
longitudinal distance is set to zero. Otherwise the longitudinal
distance is set to the minimum distance between one of the
projected points and the end points of the second line. The
longitudinal distance is determined by:

d

long

[

¯

l

i

,

¯

l

j

] = max(min(proj(p1
l̄i
,

¯

l

j

), proj(p2
l̄i
,

¯

l

j

),

proj(p1
l̄j
,

¯

l

i

), proj(p2
l̄j
,

¯

l

i

)), 0)

(4)

where

proj(pe

l̄i
,

¯

l

j

) = |(pe

l̄i
�m

l̄j
) · v

l̄j
|� l

l̄j
/2 (5)

and l

l̄j
is the length of the line ¯

l

j

.
3) Angle ✓: The angle between the two lines is given by:

✓[

¯

l

i

,

¯

l

j

] = min(arccos(v
l̄i
· v

l̄j
),⇡ � arccos(v

l̄i
· v

l̄j
)) (6)

If the dissimilarity between two obstacle lines defined in (1)
is below a threshold ✏, they fulfill the proximity criterion.
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Fig. 5. Flowchart of the clustering algorithm. First, the algorithm checks
whether an obstacle line can be assigned to an existing cluster (this module
is represented by the light grey box). If not, the system evaluates whether it
can initialize a new cluster with one other obstacle line (dark grey box).

B. Clustering Algorithm

For clustering, a (initially empty) set of clusters C is defined.
Each cluster c

j

in C contains a set of obstacle lines. A line
¯

l

i

is considered to belong to the cluster c

j

(¯l
i

2 c

j

) if it
fulfills the proximity criterion with at least one of the lines in
the cluster. In addition, a (initially empty) set of unassigned
obstacle lines L

u

is defined. With every incoming set of
obstacle lines L in every new frame, L is projected into the
global (static) reference frame using the odometry information
to create a new set L0. The elements of L0 are added to L

u

.
Then, for each ¯

l

i

in L
u

, the scheme depicted in Figure 5 is
applied:

1) In each c

j

in C it is checked whether ¯

l

i

2 c

j

. If l

i

belongs to a single cluster, it is added to this cluster. If
l

i

belongs to two or more clusters, all these clusters are
merged into a new cluster containing all the obstacle
lines of the previous clusters plus ¯l

i

. Then, ¯l
i

is deleted
from L

u

.
2) If l

i

/2 C, it is checked whether l
i

and any other obstacle
line of L

u

fulfill the proximity criterion. If so, a new
cluster c

new

containing the two obstacle lines is added
to the set of clusters C. Then, the two obstacle lines
are deleted from L

u

.
3) Obstacle line deprecation: If an obstacle line has been

in L
u

for longer than N

dep

loops, it is deleted.
4) Cluster deprecation: If the accumulated length of lines

inside a cluster exceeds K · L, where L is the longest
distance in the cluster and K is a parameter to be tuned,



the oldest lines are deleted. Furthermore, if a cluster
has existed for longer than N

dep

loops and does not
contain a minimal amount N

min

of obstacle lines, it
is deleted.

The result of this clustering algorithm is clusters of
similarly oriented lines. When a cluster contains a high
number of lines, the new ones replace the old ones, thus
updating the cluster to the latest measurements.

C. Curve Fitting

Since a cluster of lines is a poor representation of an
obstacle, we fit a curve to each cluster. For this purpose,
a cubic splined polynomial (or cubic spline) is used, as
it represents a fairly generic model for different obstacle
shapes. One of the advantages of using splines as opposed
to simple polynomial approximations, is that splines tend to
avoid the high frequency (oscillating) fitting often observed in
polynomial interpolations. If the points that form the obstacle
border correspond to a straight line, the spline interpolation
still creates a generally acceptable representation for the
obstacle detection task. A weighted least-squares approach is
used for this fitting problem, and three curves are considered:
a skeleton line indicating the center of the obstacle, and two
border lines on each side of the skeleton line. The weights
are given by the lenghts of the individual lines. A single long
line hence will have the same impact as a number of shorter
lines (e.g. in a curved curb segment). Figure 8 illustrates the
components of the curve fitting, with the borders in pink, the
skeleton in red and the obstacle lines cluster in green.

VI. EXPERIMENTS

A. Practical Considerations

The algorithm is implemented in C++, using the OpenCV
Library [23], and the Robotics Operating System (ROS) [24].
The stereo imaging system was formed by two monochromatic
Point Grey Grasshopper cameras with resolution of 800⇥600

pixels fitted with Kowa 2/3” lenses with 5mm focal length and
aperture F1.8. The system was setup on a rig with a baseline of
25 cm, as illustrated in Figure 6(b). For the stereo matching, in
our implementation we use the ELAS matching algorithm [20].
This method provides a good compromise between small
matching window sizes with high matching ratios, reducing
the impact of blurring effects around borders that affects
correlation-based stereo methods. The cameras were mounted
on a John Deere’s Gator (Figure 6(a)), an electric medium size
utility vehicle, and driven in an industrial park in Australia.
The area contains both urban and rural characteristics, with
roads, trees, sidewalks, dense buildings and open fields. In this
environment, the performance of the algorithm was assessed
based on isolated obstacles (e.g., pallets) as well as curbs.
The algorithm was also tested in public roads, for which the
cameras were mounted on a Toyota Prado. The open road
experiments were performed in suburban residential areas, and
contain extremely challenging conditions due to occlusions
and hard shadows. In all scenarios, the algorithm was tested
under different lighting conditions considering overcast and

sunny weather. The datasets have been made available for
testing and can be downloaded from our server1.

The computation was executed on recent hardware (Intel
Core i7, 2.7 GHz Octa-core) and takes 20-55 ms per frame,
depending on the amount of visible curbs and ground points
(15-25 ms for the calculation of the DEM and the extraction of
the ground points, under 1 ms for the ground plane estimation
and 5-30 ms for the image processing and the extraction of
the obstacles).

(a) (b)

Fig. 6. (a): John Deere’s Gator, the test vehicle used for the experiments.
(b): The point Grey Grasshopper cameras mounted on their stereo rig,
approximately 1 meter above the ground. Obs.: The thermal camera and the
inertial measurement unit in the center of the rig were not used in this work.

The parameters for the algorithm were set based on
extensive experimental evaluation using test sets. The median
filter in the ground plane estimation (Section III-C) is set
with length N

med

= 10. For the detection of obstacle line
candidates (Section IV), the parameters were set to w

window

= 50 pixels, w
box

= 0.5m, h
box

= 0.3m, ↵ = 0.2m,  = 0.1m,
� = 0.08m. The clustering (Section V) performs well with
w

lat

= 7, w
long

= 0.2, w
✓

= 2, ✏ = 4, N
dep

= 20, K = 10
and N

min

= 3. And finally, for the curve fitting (Section
V-C), the parameters were fixet at L

max

= 10m, w
lin

= 1,
w

slope

= 0.1 and l

max

= 0.5m. Most of these parameters
have limited influence on the performance and generally work
for all scenarios. The parameters used for the evaluation of
the candidate lines, ↵,  and �, though, have more influence
and should be set carefully. The values given above were
fixed for all the experiments.

B. Results

1) Industrial Environment: In the industrial environment
tests, the results are divided into isolated obstacles and
continuous curbs.

a) Isolated low obstacles: In this first test, pallets were
used to represent isolated low obstacles. We drove the robot
towards the obstacle in different lighting conditions (sunny
and overcast) and at different orientations (0 � and 45

�). For
each test run, we recorded whether or not the obstacle was
detected and the distance between the obstacle and the vehicle.
The results are shown in Table I, illustrating that the obstacle
was reliably detected in every test run. However, two facts
are particularly relevant. Firstly, the distance at which it is
detected is consistently small (approximately 2m) compared
to the detection distance of a curb, for example. The reason for
this lies in the small size of the obstacle. At a far distance, the

1Link to the datasets: http://dx.doi.org/10.4225/08/53D9DB330C4EB



TABLE I
DETECTION DISTANCE OF PALLETS. THE TEST VEHICLE APPROACHES THE

PALLETS IN A STRAIGHT LINE. AS SOON AS THE PALLETS ARE DETECTED,
THE VEHICLE IS STOPPED. THE DETECTION DISTANCE IS GIVEN BY THE

DISTANCE BETWEEN THE PERPENDICULAR PROJECTION OF THE CAMERA

LOCATION ONTO THE GROUND AND THE OBSTACLE ON THE GROUND.

Overcast Sunny
0 � 45 � 0 � 45 �

Number of samples 10 10 10 10
Samples detected 10 10 10 10
Mean distance [m] 1.93 1.90 2.01 1.99
Standard deviation [m] 0.064 0.141 0.054 0.054

amount of points in the DEM available to assess the already
short obstacle lines is low, making it harder to distinguish
between obstacle lines and non-obstacle lines. The shorter
the distance, though, the bigger the obstacle appears in the
image, yielding a bigger obstacle line and hence more points
in the vicinity of the obstacle line. Secondly, as can be seen
in Figure 8, only the sides that can be seen as straight lines
in the image are detected by the algorithm.

b) Curbs: Curbs are present in most structured environ-
ments and are arguably one of the most relevant obstacles.
To assess the curb detection performance, a region covering
3m to either side of the vehicle was analyzed. The success
rate is given by the ratio of detected length of curbs and the
total length of curbs passing through this area. Accordingly,
the rate of the false positives is given by the ratio of false
positive curb length detected to the total length of curbs. The
curb detection tests in the industrial park contain 11 minutes
of footage, corresponding to 1,070 meters of distance covered.
The results of the curb detection are shown under ‘Industrial’
in Table II and illustrated in Figure 8. Note that the curbs
are detected even at greater distances, in contrast to small
obstacles.

Fig. 8. Results of the obstacle detection and curb detection tests with the
skeleton (red), the borders (pink) and the obstacle line clusters (green). Low
obstacles are detected at various angles and different lighting conditions
(two bottom images). Curbs of different curvatures are detected on either
side of the road (two top images).

As with many outdoor vision applications, the main reason
for missed detections is poor image quality under challenging
lighting. This is the case when either the curb lies in a dark
shadow , or the noise level in the image is high (e.g., the
rough concrete in bright sunlight in Figure 7(a)).

The false positives are usually due to lines on the ground,
like shadows (Figure 7(b)), street marks or road cracks. Most
of these artefacts are filtered out because they do not satisfy

TABLE II
CURB DETECTION PERFORMANCE OF THE ALGORITHM IN AN

INDUSTRIAL AND A SUBURBAN ENVIRONMENT, INCLUDING DATA FROM

THE KITTI DATASET. THE SUCCESS RATE IS DETERMINED BY THE RATIO

OF THE TOTAL LENGTH OF CURBS DETECTED TO THE TOTAL LENGTH

PRESENT. THE FALSE POSITIVE RATIO IS THE LENGTH OF FALSE

POSITIVES DETECTED DIVIDED BY TOTAL LENGTH PRESENT. KEY: TP
(TRUE POSITIVE), FP (FALSE POSITIVE), NC (NO CLUSTERING).

Industrial Suburban KITTI
Overcast Sunny Overcast Sunny -

Distance [m] 1603 1869 425 395 -
TP 92% 84% 78% 55% 81%
TP - NC 80% 53% 80% 43% 64%
FP 1.4% 5.2% 0.5% 0.3% 3.2%
FP - NC 0.9% 4.1% 1.8% 2.2% 2.0%

the height difference criterion (Section II-B). However, the
presence of faulty matches in the point cloud can trigger
a false positive. As shown in Table II, this phenomenon
occurs more often in sunny conditions, where hard shadows
are present. Very rarely, the spline estimation discussed in
Section V-C can be erroneous due to a numerical instability
in the least squares approach (Figure 7(c)). This phenomenon,
however, usually only lasts for 1-2 frames and disappears as
soon as a new obstacle line is added to the cluster, therefore
not realistically affecting the performance of the algorithm.

2) Public Roads: The second test environment is a
suburban neighborhood in Brisbane, Australia. This dataset
contains a number of very challenging aspects. As examples,
grass growing over the curb edges and rough street/sidewalk
surfaces can prevent the Hough transform from identifying
lines in the images. Leaves in the gutter and slanted curbs
smoothen out the height gradient along the curbs. Also, the
issues faced with strong light-shadow contrasts are amplified
as shadows become more scattered due to trees. This dataset
also presents many discontinuities in the curbs due to parked
cars and driveways. Despite the challenges, this is a very
realistic scenario, which contains 17 minutes of footage,
corresponding to 4,140 meters of distance covered. The
results for this environment are shown in Table II under
the ‘Suburban’ field.

In addition to our own data, we test the algorithm using
the visual odometry2 stereo data available in the KITTI
dataset [25]. The nature of the issues faced in the suburban
and KITTI environments are similar to those discussed above
for the industrial park dataset. As the environments are more
challenging, though, success rates are lowered, particularly in
sunny cases. Counterintuitively, the amount of false positives
in the ‘Suburban’ field in Table II is also reduced compared
to ‘Industrial’ field in that table. This improvement is due
to the fact that the higher noise levels not only hinder the
probabilistic Hough transform from detecting actual obstacle
lines, but also reduce the false positives rates. Also note that
the line marks present in the suburban neighbourhood do not
alter the false positive rate. Lane markers are reliably filtered

2From this dataset, our evaluation includes all the frames in “Sequences”
03, 06, 14 and 15.



(a) Noisy image prevents the detection of lines. (b) False positive due to shadow. (c) Faulty spline due to numerical instability.

Fig. 7. Illustration of failure cases. In difficult lighting conditions, curbs can be occasionally missed (a). Another source of error are lines on the ground
combined with inaccurate point cloud measurements, yielding false positives such (b). Finally, numerical instabilities can occur in the curve fitting, yielding
inaccurate splines (d).

out as they do not exhibit any height difference.
For comparison, we show results discarding the clustering

and initial line estimation, performing the spline fitting
directly on the 3D points from the DEM that are persistent,
aiming at a similar approach to that of reference [15]. In this
case, the results are presented in the rows tagged with ‘NC’
(No Clustering) in Table II. Depending on the density and
quality of information, the performance between the proposed
and the NC results are similar. In sunny cases, however, where
the points are generally more segmented because of irregular
lighting, the use of piecewise line-estimation and clustering
performs better, on average. This is particularly noticeable in
the ‘Suburban’ and KITTI footage.

VII. CONCLUSIONS AND FUTURE WORK

A practical algorithm to detect low obstacles was proposed,
implemented and tested. The algorithm is able to detect
curbs and other types of low obstacles, making it applicable
to a range of objects. Furthermore, it is able to deal with
noisy and incomplete 3D range data. The algorithm was
extensively tested in an industrial environment, presenting
very good results in a scenario where the road surface is
smooth and there are clear and strong lines to be detected.
In very challenging environments, with video footage from
and suburban roads, the majority of the curbs could also be
successfully be detected. Results from the integration of the
algorithm into a closed-loop system in an autonomous vehicle
demonstrates the applicability of the method for robotics
and navigation. All the datasets used in the experiments are
available online as single images and as ROS archives.
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