
Discrete-Continuous Clustering for Obstacle Detection Using Stereo
Vision

Robert Bichsel1, Paulo Vinicius Koerich Borges2

Abstract— Efficient obstacle detection is a key requirement
for safe robot navigation. We consider the operation of au-
tonomous vehicles in structured industrial environments. In
such scenarios, an usual way to perform obstacle detection
is to generate an estimate of the ground and detect elements
that are on the path of the vehicle, using the ground as a
spatial reference. For this task, 3D occupancy grids are a well-
know solution. In this work we extrapolate the concept of 3D
grids by considering a discrete-continuous representation of the
environment. The discrete nature lies in a 2D grid parallel
to the ground whereas the continuous aspect represents the
height of each cell in the grid. This framework allows for very
efficient clustering, for which we also propose a novel algorithm
to cluster potential obstacles. Experiments on an autonomous
ground vehicle illustrate the applicability of the method.

Index Terms— Obstacle detection, stereo-vision, autonomous
vehicles.

I. INTRODUCTION
The detection of obstacles is an essential task in the

operation of autonomous vehicles. The topic has also gained
increased attention as part of advanced driving assistance
systems (ADAS), which provide safety and comfort tech-
nology for human drivers. For robot navigation, obstacle
detection is the key element for collision avoidance and local
path planning. Proposed solutions range from simple range
sensing methods that detect an obstacle and stop the robot,
to more complex algorithms that determine the location,
trajectory and size of the obstacle, creating strategies to
navigate around it.

In the context of ground vehicles (both manned or au-
tonomous), obstacle detection has been tackled with different
sensors, such as lasers [1], [2], radar [3], [4], and cameras [5],
[6]. One advantage of cameras is their relative affordability
and lightweight, aside from being a passive sensor. Cameras
can also be setup as a stereo pair, providing 3D information.
In this work we propose a novel obstacle detection algorithm
using the data available from stereo, combining information
from the 2D image and the 3D point cloud generated from
stereo. The main application for the proposed method is
autonomous vehicle navigation in industrial environments,
considering indoor and outdoor scenarios. In this context,
the definition of an obstacle is kept simple and general: an
obstacle is any object that can interfere with the vehicle path

This work was supported by the CSIRO Digital Productivity Flagship.
1Robert Bichsel is with the Autonomous Systems Lab at ETH Zurich,

Zurich, Switzerland, aralph@ethz.ch
2Paulo Vinicius Koerich Borges is with the Autonomous Systems Lab

at CSIRO Computational Informatics, Brisbane, Australia. Paulo Borges is
also an Adjunct Senior Lecturer at the School of Information Technology
and Electrical Engineering, University of Queensland, vini@ieee.org

causing a potential collision. Therefore, detecting obstacles
allows for (non)passable areas to be identified and path
planning can be recalculated accordingly or emergency stops
can be activated.

Fig. 1. Sliced structure of 3D range data.

One of the main challenges for obstacle detection based
on stereo vision is the quality of the input data. The 3D point
clouds are often noisy and contain voids where no matches
between the left and right images are found. Depending on
the matching algorithm, the 3D data is discretized in the z-
direction (i.e. perpendicular to the camera plane) and only
slices of data are available for obstacle detection [7], as
illustrated in Figure 1. There is a broad variety of algorithms
which detect obstacles from stereo vision. Talukter et al.
[8] require an obstacle to have a steep surface. For every
range point, they search for other range points consistent with
this definition (in a cone-shaped search space) and thereby
develop obstacle surfaces. The definition of an obstacle by a
steep surface is also used by Oniga et al. [9], who calculate
a Digital Elevation Model (DEM) and use the density of
range points per DEM cell as a metric to measure the local
slope. This allows for the distinction between flat surfaces
(roads, traffic isles) and obstacles. A combination of range
information and optical flow has also been used to extract
obstacles from stereo images [10]. Both range and optical
flow information are projected onto a polar grid, then the
grid cells are grouped together to identify obstacles, their
orientation and their speed. Perrone et al. [11] propose an
approach where range information and its temporal behavior
is extracted by the means of a customized feature detection
and tracking module. Detected features are clustered and
tracked, so that the obstacle is fully defined. A recent survey
by Bernini et al. [12] discusses in more detail related

algorithms.
In contrast to the methods presented above, we consider

a discrete-continuous representation of the world in order to
identify obstacles. The discrete representation corresponds
to a 2D occupancy grid [13] in the x � z plane based on
the estimation of a DEM, whereas the vertical component is
the continuous variable representing height in the y direc-
tion. An illustration of this discrete-continuous framework is
shown in Figure 2. This setup presents significant advantages
compared to the traditional 3D occupancy grid approaches,
in particular regarding the efficient clustering of objects. The
continuous nature in the vertical direction enhances the accu-
racy of the representation of the measured data. Objects are
clustered vertically into blocks (of continuos-variable length)
representing an obstacle. Our experiments indicate that this
strategy reduces significantly the false-positive and false-
negative detection error rates of small objects, improving
the overall performance of the algorithm compared to the
full 3D grid representation. We implement the algorithm on
an autonomous all-terrain vehicle (John Deere’s Gator) and
perform experiments in structured and unstructured areas.
We also perform closed-loop experiments feeding the output
of the proposed method into the path planning module for
obstacle avoidance in autonomous operations.

This paper is organized as follows. Section II presents
some background information required for understanding the
contributions presented. Section III describes the obstacle de-
tection algorithm. Section IV presents experiments, followed
by relevant conclusions in Section V.

II. BACKGROUND

The proposed method can be summarized as follows:
• Initially, a ground estimation is generated.
• Then, obstacle are clustered in a continuous-discrete

representation space.
• Finally, the confidence of each cluster is evaluated,

eliminating low likelihood objects.
This section discusses the first step, describing the proposed
method for the creation of a DEM and the estimation of
a ground plane. The DEM is in essence a down-sampled
version of the large amount of range points, which largely
reduces for the computational cost. After the DEM, points
that belong to the ground are estimated.

A. Digital Elevation Model

A DEM is a discretized representation of a surface based
on elevation data. For the creation of a DEM, the robot’s
ground plane (x� z plane of the detection frame) is divided
into a square grid. Grid parameters such as length, width and
resolution depend on the environment, size of the vehicle and
necessary localization precision. In our implementation we
use length = 40m, width = 13m, resolution = 0.1m. The range
points are assigned to these squares according to their x-
and z-coordinates. The height of the highest point (largest y-
value) in a cell is chosen as the cell’s height h

cell

, as depicted
in Figure 2. Finally, a new point cloud is created, containing a
point for each non-empty grid cell. The coordinates of such

Fig. 2. Schema of the DEM construction: The highest point in falling into
a cell defines the cell’s height hcell.

a point is given by the x- and z-coordinates of the cell’s
center and its height as y-component. Figure 3 illustrates the
generation of a the DEM from the 3D point cloud.

(a) Comparison between the raw
point cloud (white) and the DEM
point cloud (blue).

(b) View of the DEM point cloud.

Fig. 3. Result of the DEM construction. Note the significantly decreased
number of points.

B. Ground Point Extraction

The ground plane estimation is based on a set of 3D points
as input. One option for ground plane estimation is to use a
Random Sampling Consensus (RANSAC) algorithm [14] on
the entire set of DEM points. While this alternative works
satisfactorily most of the time, occasionally slanted surfaces
next to the road can be wrongly estimated as ground planes.
Therefore, we restrict the input of the RANSAC algorithm to
a subset of the DEM points, henceforth called ground points.

1) Ground Point Algorithm: The algorithm that identifies
the ground points is based on two assumptions:

• The vehicle stands on the ground that can be seen in
front of it. Hence, the closest points to the vehicle
are part of the ground plane. In a structured, industrial
environment this assumption usually holds. It does not
hold whenever an obstacle is very close to the vehicle,
which ideally should never be the case as obstacles are
detected and avoided in this framework.

• The slope of the ground is bounded locally by a fixed
threshold.

Exploiting these assumptions, the following algorithm is
able to detect ground points:

• Initialization: The points in the first R rows closest to
the vehicle (Figure 4a) are declared as ground points if
their height is within ±� m from the vehicle’s ground
plane (z = 0 in detection frame). Experimental evalu-
ation indicates that effective values for the parameters
are R = 2 and � = 0.2m.

• Development: For every point in a successive row
(henceforth called candidate point), the ground points
in the previous rows are assessed. In a triangular search
space (oriented backwards, opening 90

� degrees as
depicted in Figure 4b), the first non-empty row (the
first row with ground points in it) is identified. The
ground points in this row are divided into two groups:
one where the slope between the candidate point and the
ground point is below a given threshold (positive vote),
and one where the slope is above the threshold (negative
vote). If the positive votes outnumber the negative ones,
the candidate point is declared as a ground point.

(a) Initial R rows of ground points
(purple) in the DEM (blue). In this
case, R = 2.

(b) Development of the gound points
(purple) from the DEM (blue) using
a backwards-oriented search trian-
gle(red).

Fig. 4. Illustration of the detection algorithm for ground points.

(a) When only the first line is used
to initialize the algorithm, the choice
of ground points is often suboptimal.

(b) Erronneous ground point when
height of initialization is not re-
stricted.

Fig. 5. Inadequate choice of ground points due to poor initialization.

C. Ground Plane Estimation

Although roads usually present some degree of curvature,
a linear model is a commonly used approximation [15], [16],
[17] that is very effective in structured environments and that

has the advantage of a substantially lowered computational
complexity. A plane is defined by:

n

plane

· x+ d
plane

= 0 (1)

where n

plane

stands for the normal vector of the plane, x
is a generic point in 3D space and d denotes the negative
distance of the plane to the origin of the coordinate system.

The parameters n

plane

and d can be determine with the
RANSAC algorithm, whose input are the ground points
extracted from the DEM (Section II-B).

To remove outliers due to sudden jerks, a median filter of
length N

med

is applied in the time domain to the coefficients
of the estimated ground plane (sliding window filter). This
smoothens the transitions between the ground plane estima-
tions of consecutive frames.

III. OBSTACLE DETECTION ALGORITHM

The proposed obstacle detection algorithm initially creates
an occupancy map based on the 3D range data. Then, the
occupied space in the map is clustered and tracked over time.
Finally, isolated “outlier” clusters are filtered out using a
Bayesian approach, such that wrong matches are eliminated.
The algorithm is described in detail in this section.

A. Column Occupancy Map

The 3D range data is transformed into a 3D occupancy
map according to the following rules:

• The same grid used for the DEM (Section II-A) is also
used here. It segments the 3D space into columns, with
{y 2 R | �1 < y < +1}.

• The points contained in each column (x and z coor-
dinate within the square) are sorted according to their
height (y-coordinate).

• The points in each column are assessed from bottom
to top: Segments of the column where the distances
(in y-direction) between two successive �h points do
not exceed the threshold h

th

are defined as occupied
(cf. Figure 6a). However, only points with a minimum
height above the ground plane, h > h

g

, are considered.
This ensures that the ground is not defined as occupied.

From this procedure, a column occupancy map with seg-
ments of occupied columns is generated, as illustrated in
Figure 6b.

The column occupancy map jointly downsamples and
clusters the data points. This converts a cloud of points
into a semantic representation, where the label “occupied”
is attributed to densely populated areas within the point
cloud. Once the column occupancy map is created, a further
analysis evaluates whether the detected occupied areas are
coherent, in order to reduce false-positives. Intuitively, a
small speckle of occupied space, for example, with no
neighbours in its vicinity and not consistent over time is most
likely a false positive due to a faulty match. A large area of
occupied space that is visible in multiple successive frames,
on the other hand, is likely to represent an actual obstacle.

Δ h>Δ h
th

Δ h<Δ h
th

(a) Schema of the occupancy map creation.

(b) The result of an occupancy map.

Fig. 6. Schema and result of the occupancy map creation.

Therefore, obstacles are accessed based on properties such
as size and occupancy of the neighbourhood.

The method proposed here takes advantage of the sliced
nature of the data (Figure 1) and consists of four steps:
(i) Clustering adjoining columns of occupied space within
a slice, (ii) tracking them temporally, (iii) determining the
vicinity of clusters by further clustering them into so-called
megaclusters, and (iv) finally filtering out elements with a
high likelihood of being false-positives. These four steps are
described in the following sections.

B. Clustering Within a Slice

For the first clustering step, we can exploit the sliced
nature of the data (and hence of the column occupancy map).
In each slice, and hence in 2D, adjoining occupied columns
are clustered together and their size is calculated. The size
of a cluster is given by its volume (the area multiplied by
the thickness of the slice (10cm)).

To this end, an (initially empty) set of clusters Q is
defined. An individual cluster q (q 2 Q) contains a set of
occupied elements. Let us focus on one arbitrary slice: The
j-th element in column i, e

i,j

, is characterized by the height
of its lower and upper boundaries, y

low,ei,j and y
high,ei,j , as

illustrated in Figure 7. For each slice, adjoining elements are
clustered according to Algorithm 1:

Algorithm 1: Clustering data within a slice.

for i = 0 to number of columns in slice - 1 do
for j = 0 to number of elements in column i do

if e
i,j

is not in a cluster yet then
Add new cluster containing only e

i,j

to Q.
for k = 0 to number of elements in column i+1
do

if e
i,j

and e
i+1,k touch then

Add e
i+1,k to cluster of e

i,j

or merge
the two clusters.

i-1 i i+1 … …

y
 ei,j

ei+1,k

ei+1,k+1
yh,e i,j

yl,e i,j

Fig. 7. Illustration of the of the occupied elements within a slice.

where touch is true if

(y
low,ei,j y

high,ei+1,k) \ (y
high,ei,j � y

low,ei+1,k) 6= set

C. Tracking

Considering stereo matching algorithms that slice the data
(and also the clusters as a consequence), it is hard to evaluate
the consistency of an obstacle in z-direction (depth) when
slices of data are missing. A more accurate representation
can be achieved by temporally tracking the obstacles with the
help of odometry information. Figure 9 shows a comparison
between a tracked and non-tracked representation of clusters,
illustrating the more dense information in the tracked version.
Tracking is done by simply adding the odometry information
to the position of the previously measured data.

Fig. 8. The column occupancy map grouped into clusters. The different
colors are merely there to distinguish the clusters and have no further
meaning.

(a) No tracking. (b) Tracking for five iterations.

Fig. 9. Comparison between non-tracked and tracked clusters.

D. Clustering into Megaclusters

Bulks of clusters that are close to each other are further
grouped into megaclusters. The vicinity of a cluster is defined
as all the clusters belonging to the same megacluster. Due
to the grid structure of the clusters, a Chebyshev distance
d
Cheb

rather than an Euclidean distance is used to measure
the proximity of two clusters as

d
Cheb

= max(|p
x

� q
x

|, |p
y

� q
y

|, |p
z

� q
z

|) (2)

where p and q are two points of interest of coordinates x, y
and z. Two obstacles are said to be in proximity of each other
if the Chebyshev distance between at least one pair of points
(p, q) (p from ‘obstacle 1’ and q from ‘obstacle 2’) is below
a threshold d

th

. To cluster the obstacles into megaclusters,
we define an (initially empty) set of megaclusters M. Each
megacluster m in M contains a set of clusters. The clusters
Q are grouped into megaclusters according to Algorithm 2.

Algorithm 2: Cluster proximity analysis and merging
into megaclusters.

for i = 0 to number of clusters do
Choose cluster q

i

from Q;
for j = 0 to number of megaclusters do

Check which megaclusters q
i

belongs to
(d

Chebyshev

< d
th

).
if q

i

belongs to 2 or more megaclusters then
Merge the respective megaclusters and add q

i

else if q
i

belongs to 1 megacluster then
Add q

i

else
for j = i to number of clusters Q do

Check which clusters q
i

belongs to
(d

Chebyshev

< d
th

)
if q

i

belongs to 1 or more clusters then
Make a new megacluster with all the
clusters contained in it

else if q
i

> size threshold then
Make a new megacluster with only q

i

in it

E. Filtering

In a final step, clusters of low confidence are filtered out.
For this evaluation, the size of a cluster and the accumulated
size of other clusters in its vicinity (in its megacluster) are
considered. Small and isolated obstacles are very uncommon
in real scenarios (an obstacle usually does not float in mid-
air, but is rather attached to a pole or a branch). For this
reason, small and isolated obstacles are discarded.

A Bayesian approach is used to evaluate the cluster
confidence value. The cluster size serves as a basis for the
prior. The accumulated size of the neighbors (given by the
size of the megacluster) is used as a measurement for the
likelihood. The posterior can be calculated by:

P (O|V
acc

) =

p(V
acc

|O) · P (O)

p(V
acc

)

(3)

=

p(V
acc

|O) · P (O)

p(V
acc

|O) · P (O) + p(V
acc

| ¯O) · P (

¯O)

where P represents a probability and p a probability density
function. O stands for the event “obstacle”, ¯O for ‘no
obstacle” and V

acc

is the accumulated size (volume) of the
clusters in the megacluster. The prior is defined as:

P (O) =

V
cl

V
th

; (4)

where V
cl

is the size of the cluster and V
th

is a threshold
above which a cluster is always classified as obstacle. Since
the events O and ¯O are mutually exclusive, P (

¯O) = 1 �
P (O).

Based on experimental evaluation, p(V
acc

|O) and
p(V

acc

| ¯O) are modelled as Gaussian distributions. Since V
acc

is a purely positive quantity, a truncated Gaussian distribution
is used, given by

f(x;µ,�, a, b) =
1
�

�(x�µ

�

)

�(

b�µ

�

)� �(

a�µ

�

)

(5)

where �(⇠) = 1p
2⇡

exp (� 1
2⇠

2
) is the probability density

function of the Gaussian distribution and � is its cumulative
distribution function. The parameters a and b denote the
lower and upper bounds, and µ and � denote the mean
and the variance, respectively. In this case, the distribution
p(V

acc

|O) is centered around µ with variance � and a lower
bound of 0, whereas p(V

acc

| ¯O) is centered around 0, but has
the same standard deviation � and also a lower bound of 0, as
exemplified in Figure 10. Hence, p(V

acc

|O) and p(V
acc

| ¯O)

can be found by

p(V
acc

|O) =

1
�

�
⇣

V�µ

�

⌘

1� �

�
µ

�

� (6)

p(V
acc

| ¯O) =

2

�
�

✓
V

�

◆
(7)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

2

4

6

8

10

12

14

16

V

p

p(V|O)
p(V|O‘)

Fig. 10. The truncated gaussian distributions for p(Vacc|O) (blue) and
p(Vacc|Ō) (green).

With all the quantities defined, each cluster is assessed
according to Algorithm 3:

Algorithm 3: Assessment of the cluster quality.

for i = 0 to number of clusters do
if V > V

th

then
cluster q

i

is an obstacle
else

if P (O|V
acc

) > 0.5 then
m

i

is an obstacle
else

m
i

is discarded

A good parameter set was found empirically: h
g

= 0.3m,
�h

th

= 0.2m, d
th

= 0.7m, µ = 0.1m3, � = 0.05m3

and V
th

= 0.07m3. The results of this filtering can be
seen in Figure 11. Among these parameters, h

g

= is the
ground height threshold, �h

th

is height threshold between
consecutive points in a vertical column, d

th

is the distance
threshold for filtering, V

th

is the volume threshold for a
megacluster to be considered an obstacle and µ and �
correspond to the mean and standard deviation, respectively.

IV. EXPERIMENTS

This section presents the results of the proposed algorithm
in an open-loop scenario as well as in the closed-loop system,
with the algorithm implemented on the Gator.

A. Practical Considerations

The algorithm is implemented in C++, using the OpenCV
Library1, and the Robotics Operating System (ROS)2. The
stereo imaging system was formed by two monochromatic
Point Grey Grasshopper cameras with resolution of 800⇥600

pixels fitted with Kowa 2/3” lenses with 5mm focal length
and aperture F1.8. The system was setup on a rig with a
baseline of 25 cm, as illustrated in Figure 12b.

The stereo pair was mounted on a John Deere’s Gator
(Figure 12a), an electric utility vehicle, and driven in an

1www.opencv.org
2www.ros.org

(a) (b)

Fig. 12. (a): John Deere’s Gator, the test vehicle used for the experiments.
(b): The point Grey Grasshopper cameras mounted on their stereo rig,
approximately 1 meter above the ground. Obs.: The thermal camera and
the inertial measurement unit in the center of the rig were not used in this
work.

TABLE I
PERFORMANCE OF THE VISUAL OBSTACLE DETECTION ALGORITHM.

THE TRUE POSITIVE RATE (TPR) AND THE FALSE POSITIVE RATE (FPR)
QUANTIFY THE OUTCOME.

Overcast Sunny
Number of Frames 730 1300
TPR 100% 98%
FPR 4.1% 5.7%

industrial park in Australia. The test environment contains
both urban and rural characteristics, with trees, roads, side-
walks, curbs, dense buildings and bushland. In this area, the
performance of the algorithm was assessed based on both
static and moving obstacles. In all scenarios, the algorithm
was tested under different lighting conditions considering
overcast and sunny weather. The computation was executed
on a laptop computer (Intel Core i7, 2.7 GHz Octa-core)
and takes 20-65 ms per frame, depending on the amount of
ground points (15-25 ms for the calculation of the DEM and
the extraction of the ground points, under 1 ms for the ground
plane estimation and 30-40 ms for the image processing and
the extraction of the obstacles).

B. Results

A dataset containing a variety of obstacles, such as cars,
pedestrians, street poles and bushes, was used to assess the
performance of the obstacle detection algorithm. In each
frame of the dataset, there is an obstacle (or multiple obsta-
cles) as well as free space. The assessment of the algorithm
is done on a frame by frame basis. If all obstacles present
in the frame are detected (with an overlap of at least 90%
between detection and ground truth), the frame is counted as
a true positive. Otherwise, it is considered as a false negative.
Analogously, if the free space is detected as such, the frame
is counted as a true negative, otherwise as a false positive.
Two quantities are calculated: The true positive rate (TPR),
which is the ratio of number of true positives over number of
total actual positives (here: number of frames), and the false
positive rate (FPR), which is the ratio of number of false
positives over number of total actual negatives. The results
of this assessment can be found in Table I.

With a high quality disparity point cloud, the obsta-
cles were always detected, with the algorithm performing
extremely well regarding the TPR (Figure IV-B). On the

(a) Zoom onto an obstacle. Small speckles (clus-
ters) are only discarded if they are far away from
other clusters.

(b) Clusters and filtered out speckles in 3D. (c) Clusters and filtered out speckles overlaid over
the left camera image.

Fig. 11. Results of the filtering. The clusters are displayed in shades of green and blue. Discarded clusters are red.

(a) Detection of bushes and light
poles.

(b) Detection of cars.

(c) Detection of pedestrians. (d) Detection of poles.

Fig. 13. Snapshots of different scenes in the obstacle detection experiments.

other hand, false-positives arise when the stereo-matching
algorithm produces faulty matches between the left and the
right image, creating a faulty data range as a consequence.
This happens more often in two different scenarios:

• Sky: Occasionally, the matching algorithm falsely
matches pixels in the (uniformly blue) sky. The falsely
matched points appear close to the camera instead of
being at infinity, where they are in reality.

• Repetitive Patterns: The stereo-matching algorithm
has difficulties finding the appropriate matches between
the stereo images in the presence of repetitive patterns.
On the test site3, the facades of several buildings con-
tain vertically oriented corrugated metal sheets, which
corresponding to ambiguous feature point description
and matching.

As in natural scenarios most of the faulty matches are
scattered, the Bayesian filtering proposed in Section III-E
successfully mitigates this effect. However, when they occur
in big bulks, a false positive can appear as obstacle for a few
frames (cf. Figure 14).

3CSIRO’s QCAT (Queensland Center for Advanced Technology)

(a) Detected obstacles overlaid over
left camera image.

(b) 3D view of the detected obsta-
cles.

Fig. 14. Example of a false positive: Points in the sky are falsely matched
yielding false positives in the obstacle detection.

C. Closed-Loop Implementation on an Autonomous Vehicle

This section discusses results of the system implementated
on an autonomous vehicle, illustrating that the method can
effectively assist in the navigation. For these experiments,
the Gator (Figure 12a) is also used as the test platform. The
vehicle has been automated at CSIRO, and it is equipped
with four horizontally mounted Hokuyo 2D laser scanners
(mounted approximately 1m above ground), which are used
for localization.

The lower-level navigation management is done by the
Navigation Package4 available by ROS. It bases its path
planning on a map and on an arbitrary number of sensor
inputs. The map is created with the Gmapping Package5. A
satellite view of the some of the approximate routes traversed
is shown in Figure 15(a).

The obstacles detected with the proposed algorithm are
used as a second sensor input for the navigation package.
The path planning is consequently adapted in order to
avoid the obstacles. The following subsections illustrate the
applicability of the algorithm embedded in a robotics vehicle
in two different scenarios.

1) Goal in unreachable area: This experiment considers
the scenario in which the end-position given to the Gator
cannot be reached due to an obstacle in its path. As the
global path planner sets a path, the Gator tries to follow the
global plan as closely as possible with the assistance of a
local path planner. When the obstacle is detected, a local
plan to follow the global plan cannot be determined and the

4www.wiki.ros.org/navigation
5www.wiki.ros.org/gmapping

(a) Satellite view of the test
area (the drivable routes are
highlighted in green), illus-
trating the structured and un-
structured routes. The scale is
410⇥ 360 meters.

(b) Map of the test area from
2D laser scans mounted on the
vehicle. The laser-based local-
ization is used for the closed-
loop experiments.

Fig. 15. Vehicle and cameras used in the experiments.

vehicle stops. In our implementation, a “recovery behaviour”
is executed (e.g. reverse and calculate a new plan). In case
the obstacle continues to be detected, the recovery behaviour
is unsuccessful and the robot aborts the task. We ran this
test 15 times under different lighting conditions, achieving
successful detection with the robot aborting the mission in
all the cases.

2) Obstacle in the way: In contrast to the scenario above,
the goal is often reachable, but the path needs to be adjusted
due to an obstacle in the way. If the obstacle is detected from
far enough, a path around it can be determined. The experi-
mental setup is shown in Figure 16. If the robot is already too
close to the obstacle for a smooth path to be found around it,
it executes its recovery behaviours (i.e. reverse and calculate
a new plan). 15 test runs were performed in different lighting
conditions. The robot satisfactorily avoided the obstacle and
reached its goal 14 times, failing once due to bright direct
sunlight. As the vision system is used in conjunction with
the lasers used for localisation, in this failure case, the lasers
sensed the object proximity and stalled the vehicle.

(a) (b)

Fig. 16. Experimental setup where an obstacle requires re-planning of the
path. (a) The goal (green dot) lies behind the obstacle, but is still reachable.
(b) A path plan is initially found in the map (in black), but as the obstacle
is detected, the navigation follows an alternative path (in red) around it.

V. CONCLUSIONS

We have presented an obstacle detection algorithm
using stereo-vision, proposing a novel data representation
paradigm and clustering approach. We run several tests
exposing the algorithm to many different objects. The
low false-positive and false-negative rates illustrate the

applicability of the method. In future work, we plan
to incorporate a temporal persistence filter and obstacle
velocity estimation in order to mitigate the matching error
effects described in Section IV-B. One important aspect of
the false-positives, is that they generally do not persist in
time, and a temporal persistence filter would only accept
obstacles that are persistent over multiple frames. However,
to accurately define such a filter is not a trivial task, as this
requires a diligent spacial description of an object.

REFERENCES

[1] J. Han, D. Kim, M. Lee, and M. Sunwoo, “Enhanced road boundary
and obstacle detection using a downward-looking lidar sensor,” Vehic-
ular Technology, IEEE Transactions on, vol. 61, no. 3, pp. 971–985,
2012.

[2] R. Manduchi, A. Castano, A. Talukder, and L. Matthies, “Obstacle de-
tection and terrain classification for autonomous off-road navigation,”
Autonomous robots, vol. 18, no. 1, pp. 81–102, 2005.

[3] G. Reina, J. Underwood, G. Brooker, and H. Durrant-Whyte, “Radar-
based perception for autonomous outdoor vehicles,” Journal of Field
Robotics, vol. 28, no. 6, pp. 894–913, 2011.

[4] M. S. Darms, P. E. Rybski, C. Baker, and C. Urmson, “Obstacle detec-
tion and tracking for the urban challenge,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 10, no. 3, pp. 475–485, 2009.

[5] A. Wedel, U. Franke, J. Klappstein, T. Brox, and D. Cremers,
“Realtime depth estimation and obstacle detection from monocular
video,” in Pattern Recognition. Springer, 2006, pp. 475–484.

[6] Y. Dong, Z. Hu, K. Uchimura, and N. Murayama, “Driver inattention
monitoring system for intelligent vehicles: A review,” Intelligent
Transportation Systems, IEEE Transactions on, vol. 12, no. 2, pp.
596–614, 2011.

[7] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Asian Conference on Computer Vision (ACCV), 2010.

[8] A. Talukder, R. Manduchi, A. Rankin, and L. Matthies, “Fast and
reliable obstacle detection and segmentation for cross-country naviga-
tion,” in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2. IEEE,
2002, pp. 610–618.

[9] F. Oniga and S. Nedevschi, “Processing dense stereo data using
elevation maps: Road surface, traffic isle, and obstacle detection,”
Vehicular Technology, IEEE Transactions on, vol. 59, no. 3, pp. 1172–
1182, March 2010.

[10] C. D. Pantilie and S. Nedevschi, “Real-time obstacle detection in
complex scenarios using dense stereo vision and optical flow,” in
Intelligent Transportation Systems (ITSC), 2010 13th International
IEEE Conference on. IEEE, 2010, pp. 439–444.

[11] D. Perrone, L. Iocchi, P. Antonello, and C. Fiat, “Real-time stereo
vision obstacle detection for automotive safety application,” in Intel-
ligent Autonomous Vehicles, vol. 7, 2010, pp. 240–245.

[12] N. Bernini, M. Bertozzi, L. Castangia, M. Patander, and M. Sabbatelli,
“Real-time obstacle detection using stereo vision for autonomous
ground vehicles: A survey,” in Intelligent Transportation Systems
(ITSC), 2014 IEEE 17th International Conference on. IEEE, 2014,
pp. 873–878.

[13] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[15] S. Se and M. Brady, “Stereo vision-based obstacle detection for
partially sighted people,” in Computer Vision ACCV’98, ser. Lecture
Notes in Computer Science, R. Chin and T.-C. Pong, Eds. Springer
Berlin Heidelberg, 1997, vol. 1351, pp. 152–159.

[16] R. Turchetto and R. Manduchi, “Visual curb localization for au-
tonomous navigation,” in Intelligent Robots and Systems, 2003. (IROS
2003). Proceedings. 2003 IEEE/RSJ International Conference on,
vol. 2, Oct 2003, pp. 1336–1342 vol.2.

[17] X. Lu and R. Manduchi, “Detection and localization of curbs and
stairways using stereo vision.” in ICRA. IEEE, 2005, pp. 4648–4654.

